DOI QR코드

DOI QR Code

Assessing asymmetric steel angle strength under biaxial eccentric loading

  • Shu-Ti Chung (Department of Civil and Construction Engineering, Chaoyang University of Technology) ;
  • Wei-Ting Hsu (Department of Civil and Construction Engineering, Chaoyang University of Technology)
  • 투고 : 2023.12.07
  • 심사 : 2024.08.20
  • 발행 : 2024.09.10

초록

Due to the asymmetric cross-section of unequal-angle steel, the application of loads can induce axial rotation, leading to a series of buckling failure behaviors. Special attention must be paid during the design process. The present study aims to analyze the structural behavior of asymmetric steel angle members under various eccentric loading conditions, considering the complex biaxial bending interaction that arises when the angle steel is connected to the panel. Several key factors are investigated in this paper, including the effects of uniaxial and biaxial eccentricity on the structural behavior and the eccentric axial compression strength of long and short legs at different load application points. Potential risks associated with the specified load points, based on the AISC specifications, are also discussed. The study observed that the strength values of the members exhibited significant changes when the eccentric load deviates from the specified point. The relative position of the eccentric load point and the slenderness ratio of the member are critical influencing factors. Overall, this research intends to enhance the accuracy and reliability of strength analysis methods for asymmetric single angle steel members, providing valuable insights and guidance for a safer and more efficient design.

키워드

참고문헌

  1. Abdelrahman, A.H.A., Du, Z.L., Liu, Y.P. and Chan, S.L. (2019), "Stability design of single angle member using effective stress-strain. method", Struct., 20, 298-308. https://doi.org/10.1016/j.istruc.2019.04.013.
  2. American Institute of Steel Construction (2017), 16th Edition, Steel Construction Manual, AISC, Chicago, Illinois, USA.
  3. Aydin, R. and Dogan, M. (2007), "Elastic, full plastic and lateral torsional buckling analysis of steel single-angle section beams subjected to biaxial bending", J. Constr. Steel Res., 63(1), 13-23. https://doi.org/10.1016/j.jcsr.2006.03.012.
  4. Ban, H., Shi, G., Shi, Y. and Wang, Y. (2012), "Residual stress tests of high-strength steel equal angles", J. Struct. Eng., 138(12), 1446-1454. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000585.
  5. Behzadi-Sofiani, B., Gardner, L. and Wadee, M.A. (2021), "Stability and design of fixed-ended stainless steel equal-leg angle section compression members", Eng. Struct., 249(15), 113281. https://doi.org/10.1016/j.engstruct.2021.113281.
  6. Behzadi-Sofiani, B., Gardner, L. and Wadee, M.A. (2022), "Testing, numerical analysis and design of stainless steel equalleg angle section beams", Struct., 37, 977-1001. https://doi.org/10.1016/j.istruc.2022.01.060.
  7. Behzadi-Sofiani, B., Wadee, M.A. and Gardner, L. (2024), "Pinended stainless steel equal-leg angle section members under compression and major-axis bending: Experimentation, FE modelling and design", Thin Wall. Struct., 203, 112154. https://doi.org/10.1016/j.tws.2024.112154.
  8. Biro, I. and Cveticanin, L. (2016), "Procedures for determination of elastic curve of simply and multiple supported beams", Struct. Eng. Mech., 60(1), 21-30. https://doi.org/10.12989/sem.2016.60.1.021.
  9. Cao, K., Guo, Y.J. and Zeng, D.W. (2015), "Buckling behavior of large-section and 420 MPa high-strength angle steel columns", J. Constr. Steel Res., 111, 11-20. https://doi.org/10.1016/j.jcsr.2015.03.014.
  10. Chan, S.L. and Cho, S.H. (2008), "Second-order analysis and design of angle trusses Part I: Elastic analysis and design", Eng. Struct., 30(3), 616-625. https://doi.org/10.1016/j.engstruct.2007.05.010.
  11. Gomes Jr, J.O., Carvalho, H., Silva, L.S., Filho, J.O. and Lavall, A. (2023), "Assessment of design procedures for the buckling resistance of hot-rolled steel equal leg angles under concentric and eccentric compression", Struct., 57, 105308. https://doi.org/10.1016/j.istruc.2023.105308.
  12. Guo, X.N., Zong, S.H., Shen, Z., Zhu, S.J. and Yuan, S.Y. (2020), "Mechanical behavior of in-service axial compression angle steel members strengthened by welding", J. Build. Eng., 32, 101736. https://doi.org/10.1016/j.jobe.2020.101736.
  13. Hussain, A., Liu, Y.P. and Chan S.L. (2018), "Finite element modeling and design of single angle member under bi-axial bending", Struct., 16, 373-389. https://doi.org/10.1016/j.istruc.2018.11.001.
  14. Kettler, M., Lichtl, G. and Unterweger, H. (2019), "Experimental tests on bolted steel angles in compression with varying end supports", J. Constr. Steel Res., 155, 301-315. https://doi.org/10.1016/j.jcsr.2018.12.030.
  15. Laracuente, M.E., Sippel, E.J. and Blum, H.B. (2024), "Experimental investigation of fixed-ended hot-rolled austenitic stainless-steel unequal-leg angles under compression", Struct., 59, 105585. https://doi.org/10.1016/j.istruc.2023.105585.
  16. Liang, Y.T., Jeyapragasam, V.V.K., Zhang, L.L. and Zhao, O. (2019), "Flexural-torsional buckling behaviour of fixed-ended hot-rolled austenitic stainless steel equal-leg angle section columns", J. Constr. Steel Res., 154, 43-54. https://doi.org/10.1016/j.jcsr.2018.11.019.
  17. Liu, Y. and Chantel, S. (2011), "Experimental study of steel single unequal-leg angles under eccentric compression", J. Constr. Steel Res., 67(6), 919-928. https://doi.org/10.1016/j.jcsr.2011.02.005.
  18. Liu, Y. and Hui, L. (2010), "Finite element study of steel single angle beam-columns", Eng. Struct., 32(8), 2087-2095. https://doi.org/10.1016/j.engstruct.2010.03.009.
  19. Menezes, A., Vellasco, P., Lima, L. and Silva, T. (2019), "Experimental and numerical investigation of austenitic stainless steel hot-rolled angles under compression", J. Constr. Steel Res., 152, 42-56. https://doi.org/10.1016/j.jcsr.2018.05.033.
  20. Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., 65(4), 401-408. https://doi.org/10.12989/sem.2018.65.4.401.
  21. Ohga, M., Takaue, A., Shigematsu, T. and Hara, T. (2001), "Effects of initial imperfections on nonlinear behaviors of thin-walled members", Struct. Eng. Mech., 11(5), 519-534. https://doi.org/10.12989/sem.2001.11.5.519.
  22. Shirmohammadzade, A., Rafezy, B. and Howson, W.P. (2011), "Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section", Struct. Eng. Mech., 38(2), 195-210. https://doi.org/10.12989/sem.2011.38.2.195
  23. Sirqueira, A., Vellasco, P., Lima, L. and Sarquis, F. (2020), "Experimental assessment of stainless steel hot-rolled equal legs angles in compression", J. Constr. Steel Res., 169, 106069. https://doi.org/10.1016/j.jcsr.2020.106069.
  24. Sun, Y., Song, D., Sun, S.X. and Guo, Y.J. (2023), "Behavior of large-size and high-strength steel angle subjected to eccentric load", Struct., 57, 105161. https://doi.org/10.1016/j.istruc.2023.105161.
  25. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755.
  26. Tang, Z., Li, Z. and Wang, T. (2023), "Probabilistic bearing capacity assessment for unequal-leg angle cross-bracings in transmission towers", J. Constr. Steel Res., 200, 107672. https://doi.org/10.1016/j.jcsr.2022.107672.
  27. Trahair, N.S. (2003), "Lateral buckling strengths of steel angle section beams", J. Struct. Eng., 129(6), 784-791. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(784).
  28. Trahair, N.S. (2004), "Biaxial bending of steel angle section beams", J. Struct. Eng., 130(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(554).
  29. Trahair, N.S. (2005), "Buckling and torsion of steel unequal angle beams", J. Struct. Eng., 131(3), 474-488. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(474).
  30. Trahair, N.S. (2007), "Biaxial bending and torsion of steel equal angle section beams", J. Struct. Eng., 133(1), 78-84. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(78).
  31. Trahair, N.S. and Hancock, G.J. (2003), "Steel member strength by inelastic lateral buckling", J. Struct. Eng., 130(1), 64-69. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(64).
  32. Trahair, N.S. and Rasmussen, K.J.R. (2005), "Finite-element analysis of the flexural buckling of columns with oblique restraints", J. Struct. Eng., 131(3), 481-487. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(481)
  33. Zhang, L.L., Tan, K.H. and Zhao, O. (2019), "Experimental and numerical studies of fixed-ended cold-formed stainless steel equal-leg angle section columns", Eng. Struct., 184(1), 134-144. https://doi.org/10.1016/j.engstruct.2019.01.083.
  34. Zhang, L.L., Tan, K.H. and Zhao, O. (2020), "Local stability of press-braked stainless steel angle and channel sections: Testing, numerical modelling and design analysis", Eng. Struct., 203(15), 109869. https://doi.org/10.1016/j.engstruct.2019.109869.