Acknowledgement
The authors greatly appreciate the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) to the present research. The supports of the University of Regina are also acknowledged.
References
- Ahmadi, H. and Foroutan, K. (2019), "Nonlinear vibration of stiffened multilayer FG cylindrical shells with spiral stiffeners rested on damping and elastic foundation in thermal environment", Thin Wall. Struct., 145, 106388. https://doi.org/10.1016/j.tws.2019.106388.
- Ahmadi, H., Bayat, A. and Duc, N.D. (2021), "Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method", Compos. Struct., 256, 113090. https://doi.org/10.1016/j.compstruct.2020.113090.
- Alijani, F., Amabili, M., Karagiozis, K. and Bakhtiari-Nejad, F. (2011), "Nonlinear vibrations of functionally graded doubly curved shallow shells", J. Sound Vib., 330(7), 1432-1454. https://doi.org/10.1016/j.jsv.2010.10.003.
- Araar, M. and Jullien, J.F. (1996), "Buckling of cylindrical shells under external pressure proposition of a new shape of self-stiffened shell", Struct. Eng. Mech., 4(4), 451-460. https://doi.org/10.12989/sem.1996.4.4.451.
- Bahranifard, F., Malekzadeh, P. and Haghighi, M.G. (2022), "Moving load response of ring-stiffened sandwich truncated conical shells with GPLRC face sheets and porous core", Thin Wall. Struct., 180, 109984. https://doi.org/10.1016/j.tws.2022.109984.
- Bahranifard, F., Malekzadeh, P., Golbahar Haghighi, M.R. and Malakouti, M. (2023), "Free vibration of point supported ring-stiffened truncated conical sandwich shells with GPLRC porous core and face sheets", Mech. Bas. Des. Struct., 1-31. https://doi.org/10.1080/15397734.2023.2272674.
- Bich, D.H., Duc, N.D. and Quan, T.Q. (2014), "Nonlinear vibration of imperfect eccentrically stiffened functionally graded double curved shallow shells resting on elastic foundation using the first order shear deformation theory", Int. J. Mech. Sci., 80, 16-28. https://doi.org/10.1016/j.ijmecsci.2013.12.009.
- Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002.
- Brush, D.D. and Almroth, B.O. (1975), Buckling of bars, plates and shells, Mc. Graw-Hill, New York.
- Chan, D.Q., Long, V.D. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of FGM shear-deformable truncated conical shells reinforced by FGM stiffeners", Mech. Compos. Mater., 54(6), 745-764. https://doi.org/10.1007/s11029-019-9780-x.
- Chan, D.Q., Thanh, N.V., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837.
- Chorfi, S.M. and Houmat, A. (2010), "Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form", Compos. Struct., 92(10), 2573-2581. https://doi.org/10.1016/j.compstruct.2010.02.001.
- Cong, P.H. and Duc, N.D. (2021), "length Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments", Thin Wall. Struct., 163, 107748. https://doi.org/10.1016/j.tws.2021.107748.
- Cong, P.H., Khanh, N.D., Khoa, N.D. and Duc, N.D. (2018), "New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT", Compos. Struct., 185, 455-465. https://doi.org/10.1016/j.compstruct.2017.11.047.
- Dai, L. (2008), Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments, World Scientific Publishing Co., New Jersey.
- Dat, N.D., Quan, T.Q. and Duc, N.D. (2022), "Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading", Compos. Struct., 280, 114925. https://doi.org/10.1016/j.compstruct.2021.114925.
- Dong, D.T. and Van Dung, D. (2019), "A third-order shear deformation theory for nonlinear vibration analysis of stiffened functionally graded material sandwich doubly curved shallow shells with four material models", J. Sandw. Struct. Mater., 21(4), 1316-1356. https://doi.org/10.1177/1099636217715609.
- Du, C. and Li, Y. (2013), "Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments", Compos. Struct., 102, 164-174. https://doi.org/10.1016/j.compstruct.2013.02.028.
- Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
- Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
- Duc, N.D. and Quan, T.Q. (2012), "Nonlinear stability analysis of double-curved shallow FGM panels on elastic foundations in thermal environments", Mech. Compos. Mater., 48(4), 435-448. https://doi.org/10.1007/s11029-012-9289-z.
- Duc, N.D. and Quan, T.Q. (2013), "Nonlinear postbuckling of imperfect eccentrically stiffened P-FGM double curved thin shallow shells on elastic foundations in thermal environments", Compos. Struct., 106, 590-600. https://doi.org/10.1016/j.compstruct.2013.07.010.
- Duc, N.D. and Thang, P.T. (2014), "Nonlinear buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments", Int. J. Mech. Sci., 81, 17-25. https://doi.org/10.1016/j.ijmecsci.2014.01.016.
- Duc, N.D. and Tung, H.V. (2010a), "Mechanical and thermal postbuckling of shear-deformable FGM plates with temperature-dependent properties", Mech. Compos. Mater., 46(5), 461-476. https://doi.org/10.1007/s11029-010-9163-9.
- Duc, N.D. and Tung, H.V. (2010b), "Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression", Comput. Mater. Sci., 49(4), S313-S316. https://doi.org/10.1016/j.commatsci.2009.12.030.
- Duc, N.D., Hadavinia, H., Quan, T.Q. and Khoa, N.D. (2019), "Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment", Eur. J. Mech. A-Solids, 75, 355-366. https://doi.org/10.1016/j.euromechsol.2019.01.024.
- Fan, Y., Xiang, Y. and Shen, H.S. (2019), "Nonlinear forced vibration of FG-GRC laminated plates resting on visco-Pasternak foundations", Compos. Struct., 209, 443-452. https://doi.org/10.1016/j.compstruct.2018.10.084.
- Ferezghi, Y.S., Sohrabi, M.R. and MosaviNezhad, S.M. (2018), "Dynamic analysis of non-symmetric FG cylindrical shell under shock loading by using MLPG method", Struct. Eng. Mech., 67(6), 659-669. https://doi.org/10.12989/sem.2018.67.6.659.
- Foroutan, K. and Dai, L. (2023a), "Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core", Steel Compos. Struct., 48(3), 335. https://doi.org/10.12989/scs.2023.48.3.335.
- Foroutan, K. and Dai, L. (2023b), "Nonlinear dynamic response and vibration of spiral stiffened FG toroidal shell segments with variable thickness", Mech. Bas. Des. Struct., 1-23. https://doi.org/10.1080/15397734.2023.2242487.
- Foroutan, K. and Dai, L. (2024a), "Nonlinear free and forced vibrations of oblique stiffened porous FG shallow shells embedded in a nonlinear elastic foundation", Struct. Eng. Mech., 89(1), 33. https://doi.org/10.12989/sem.2024.89.1.033.
- Foroutan, K. and Dai, L. (2024b), "Nonlinear torsional vibration and dynamic post-buckling responses of spiral stiffened functionally graded porous cylindrical shells", J. Reinf. Plast. Compos., 07316844231225079. https://doi.org/10.1177/07316844231225079.
- Foroutan, K., Ahmadi, H. and Shariyat, M. (2020), "Asymmetric large deformation superharmonic and subharmonic resonances of spiral stiffened imperfect FG cylindrical shells resting on generalized nonlinear viscoelastic foundations", Int. J. Appl. Mech., 12(05), 2050052. https://doi.org/10.1142/S1758825120500520.
- Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2018), "Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression", Struct. Eng. Mech., 66(3), 295-303. https://doi.org/10.12989/sem.2018.66.3.295.
- Fu, T., Wu, X., Xiao, Z., Chen, Z. and Li, J. (2021), "Vibroacoustic characteristics of eccentrically stiffened functionally graded material sandwich cylindrical shell under external mean fluid", Appl. Math. Model., 91, 214-231. https://doi.org/10.1016/j.apm.2020.09.061.
- Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall. Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039.
- Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Bedia, E.A. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. https://doi.org/10.12989/sem.2016.57.1.127.
- Jahangiri, R., Rezaee, M. and Manafi, H. (2022), "Nonlinear and chaotic vibrations of FG double curved sandwich shallow shells resting on visco-elastic nonlinear Hetenyi foundation under combined resonances", Compos. Struct., 295, 115721. https://doi.org/10.1016/j.compstruct.2022.115721.
- Karimiasl, M., Ebrahimi, F. and Akgoz, B. (2019), "Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading", Compos. Struct., 223, 110988. https://doi.org/10.1016/j.compstruct.2019.110988.
- Kiani, Y. (2018), "Torsional vibration of functionally graded carbon nanotube reinforced conical shells", Sci. Eng. Compos. Mater., 25(1), 41-52. https://doi.org/10.1515/secm-2015-0454.
- Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1: 1 Internal resonance", Appl. Math. Mech., 42(6), 805-818. https://doi.org/10.1007/s10483-021-2740-7.
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded shallow shells according to a 2D higher-order deformation theory", Compos. Struct., 84(2), 132-146. https://doi.org/10.1016/j.compstruct.2007.07.006.
- Nayak, A.N. and Bandyopadhyay, J.N. (2005), "Free vibration analysis of laminated stiffened shells", J. Eng. Mech., 131(1), 100-105. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:1(100).
- Nayfeh, A.H. and Mook, D.T. (2008), Nonlinear Oscillations, John Wiley & Sons.
- Ninh, D.G., Tien, N.D., Hoang, V.N.V. and Bich, D.H. (2020), "Vibration of cylindrical shells made of three layers W-Cu composite containing heavy water using Flugge-Lur'e-Bryrne theory", Thin Wall. Struct., 146, 106414. https://doi.org/10.1016/j.tws.2019.106414.
- Patel, S.N., Datta, P.K. and Sheikh, A.H. (2006), "Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading", Shock Vib. Dig., 38(5), 448-449.
- Quan, T.Q. and Duc, N.D. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. Therm. Stress., 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601.
- Quan, T.Q. and Duc, N.D. (2017), "Nonlinear thermal stability of eccentrically stiffened FGM double curved shallow shells", J. Therm. Stress., 40(2), 211-236. https://doi.org/10.1080/01495739.2016.1225532.
- Quan, T.Q. and Duc, N.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
- Quan, T.Q., Anh, V.M., Mahesh, V. and Duc, N.D. (2022), "Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate", Mech. Adv. Mater. Struct., 29(1), 127-137. https://doi.org/10.1080/15376494.2020.1752864.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Boca Raton, CRC Press.
- Salehi, M., Gholami, R. and Ansari, R. (2022), "Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory", Int. J. Struct. Stab. Dyn., 22(06), 2250075. https://doi.org/10.1142/S0219455422500754.
- Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., 60(4), 615-631. https://doi.org/10.12989/sem.2016.60.4.615.
- Sheng, G.G. and Wang, X. (2018), "The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells", Appl. Math. Model., 56, 389-403. https://doi.org/10.1016/j.apm.2017.12.021.
- Sofiyev, A.H. (2007), "Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads", Struct. Eng. Mech., 27(3), 365-391. https://doi.org/10.12989/sem.2007.27.3.365.
- Sofiyev, A.H., Turan, F. and Zerin, Z. (2020), "Large-amplitude vibration of functionally graded orthotropic double-curved shallow spherical and hyperbolic paraboloidal shells", Int. J. Press. Vess. Pip., 188, 104235. https://doi.org/10.1016/j.ijpvp.2020.104235.
- Toan Thang, P., Nguyen-Thoi, T. and Lee, J. (2020), "Mechanical stability of metal foam cylindrical shells with various porosity distributions", Mech. Adv. Mater. Struct., 27(4), 295-303. https://doi.org/10.1080/15376494.2018.1472338.
- Van Long, N., Thinh, T.I., Bich, D.H. and Tu, T.M. (2022), "Nonlinear dynamic responses of sandwich-FGM doubly curved shallow shells subjected to underwater explosions using first-order shear deformation theory", Ocean Eng., 260, 111886. https://doi.org/10.1016/j.oceaneng.2022.111886.
- Wang, J., Wang, Y.Q. and Chai, Q. (2022), "Free vibration analysis of a spinning functionally graded spherical-cylindrical-conical shell with general boundary conditions in a thermal environment", Thin Wall. Struct., 180, 109768. https://doi.org/10.1016/j.tws.2022.109768.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
- Zhang, Y.W. and She, G.L. (2023), "Nonlinear harmonic resonances of spinning graphene platelets reinforced metal foams cylindrical shell with initial geometric imperfections in thermal environment", Struct. Eng. Mech., 88(5), 405. https://doi.org/10.12989/sem.2023.88.5.405.