DOI QR코드

DOI QR Code

Bioactive Compound Accumulation and Antioxidant Activity in Tomato Fruit Skin at Different Ripening Stages

과피색에 따른 토마토 과실의 성숙 단계별 기능성물질 축적과 항산화 활성

  • Jae Yeon Jeong (Department of Horticulture, Kongju National University) ;
  • Hyo Gil Choi (Department of Horticulture, Kongju National University) ;
  • Nam Jun Kang (Department of Horticulture, Gyeongsang National University)
  • 정재연 (국립공주대학교 원예학과 ) ;
  • 최효길 (국립공주대학교 원예학과 ) ;
  • 강남준 (경상국립대학교 원예과학부)
  • Received : 2024.04.11
  • Accepted : 2024.05.08
  • Published : 2024.07.31

Abstract

This study was conducted to determine the differences in bioactive compounds and antioxidant activity according to the ripening stage of tomato fruits with different skin colors. The tomato samples used three tomato cultivars distinguished by their skin colors as yellow, black, and red at the mature stage. Tomato samples were analyzed for soluble sugars, lycopene, ascorbic acid, polyphenols, and antioxidant activity after being harvested at green, breaker, turning, and mature. The major sugars in tomato fruits are fructose and glucose. The content of fructose and glucose in yellow tomatoes gradually increased during the ripening stages. However, red and black tomatoes, their levels exhibited an initial increase at the breaker points, followed by a period of relative constancy. The lycopene contents in fruits of all skin colors showed a significant increase during ripening stages. The highest content of lycopene was observed at the mature stage in red tomato fruits. Differential patterns in the accumulation of ascorbic acid between yellow and black or red tomato fruits were detected during the entire ripening stages. In yellow tomato fruit, the content of ascorbic acid remained consistently low throughout the ripening stages. Ascorbic acid content in black tomato fruits significantly increased to 2,249 mg·kg-1 of tomato fruits at the mature stage, while in red tomato fruits, it gradually increased to 3,529 mg·kg-1 of fruits at the mature stage. Quercitrin content in tomato fruits gradually decreased during the ripening stages. In yellow tomato fruits, the ABTS radical scavenging activity abruptly increased at the turning stages, while in black and red tomato fruits, it gradually increased according to the ripening stages. The DPPH radical scavenging activity in tomato fruits significantly increased at the turning stages.

본 연구는 과피색에 따른 토마토 과실의 숙성 단계에 따른 기능성 물질 및 항산화 활성의 차이를 알아보기 위해 실시하였다. 토마토 샘플은 성숙한 단계에서 과피색이 황색, 흑색, 적색으로 구별되는 세 가지 토마토 품종을 이용하였다. 토마토 샘플을 녹색기, 변색기, 최색기, 완숙기의 4가지 숙성 단계에서 수확한 후 당, 라이코펜, 아스코르브산, 폴리페놀 및 항산화 활성을 포함한 다양한 생리 활성 화합물을 분석하였다. 토마토 과실의 주요 당분은 과당과 포도당이다. 황색 토마토의 과당과 포도당 함량은 숙성 단계에 따라 점차 증가하였다. 그러나 흑색 토마토와 적색 토마토는 변색기 단계에서 증가한 후 상대적으로 일정하게 유지되었다. 과피색에 관계없이 모든 토마토 과실에 함유된 라이코펜 함량은 숙성 단계에 따라 크게 증가했습니다. 라이코펜 함량은 적색 토마토 과실의 성숙 단계에서 가장 높게 관찰되었다. 황색 토마토 과실의 아스코르브산 함량은 낮았으며 숙성 단계 동안 상대적으로 일정하게 유지되었다. 흑색 토마토 과실의 아스코르브산 함량은 성숙 단계에서 2,249mg·kg-1으로 크게 증가한 반면, 적색 토마토 과실에서는 성숙 단계에서 3,529mg·kg-1으로 점차 증가했습니다. 페놀성 화합물인 퀘르시트린은 토마토 과실에서 발견되었지만, 성숙 단계에서 토마토 과실의 퀘르시트린 함량은 점차적으로 감소되었다. ABTS 라디칼 소거 활성은 최색기의 황색 토마토 과실에서 급격히 증가한 반면, 흑색 토마토와 적색 토마토에서는 숙성 단계에 따라 점진적으로 증가하였다. 모든 토마토 과실의 DPPH 라디칼 소거 활성은 최색기에서 크게 증가했다.

Keywords

Acknowledgement

본 연구는 2024년 국립공주대학교 학술연구지원사업의 지원에 의해 이루어짐.

References

  1. Akhtar M, A. Ahmad, T. Masud, and F.H. Wattoo, 2018, Phenolic, carotenoid, ascorbic acid contents and their antioxidant activities in bell pepper. Acta Sci Pol Hortorum Cultus 18:13-21. doi:10.24326/asphc.2019.1.2
  2. Anlar H.G., and M. Bacanli 2020, Lycomene as an antioxidant in human health and diseases. In Pathology (pp. 247-254). Academic Press. doi:10.1016/B978-0-12-815972-9.00024-X
  3. Beltran E.G., and K. Macklin 1962, On the chemistry of the tomato and tomato products: A review of literature (1945 to 1961). Thomas J Lipton Hoboken NJ.
  4. Benson E.E., P.T. Lynch, and J. Jones 1992, Variation in free-radical damage in rice cell suspensions with different embryogenic potentials. Planta 188:296-305. doi:10.1007/BF00192795
  5. Bertin N., and M. Genard 2018, Tomato quality as influenced by preharvest factors. Sci Hortic 233:264-276. doi:10.1016/j.scienta.2018.01.056
  6. Bravo S., J. Garcia-Alonso, G. Martin-Pozuelo, V. Gomez, M. Santaella, I. Navarro-Gonzalez, and M.J. Periago 2012, The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Res Int 49:296-302. doi:10.1016/j.foodres.2012.07.018
  7. Chauhan K., S. Sharma, N. Agarwal, and B. Chauhan 2011, Lycopene of tomato fame: its role in health and disease. Int J Pharm Sci Rev Res 10:99-115.
  8. Cheel J., C. Theoduloz, J.A. RodrIguez, P.D.S. Caligari, and G. Schmeda-Hirschmann 2007, Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. × ananassa cv. Cehandler. Food Chem 102:36-44. doi:10.1016/j.foodchem.2006.04.036
  9. Cheng H.M, G. Koutsidis, J.K. Lodge, A.W. Ashor, M. Siervo, and J. Lara 2019, Lycopene and tomato and risk of cardiovascular diseases: a systematic review and meta-analysis of epidemiologica evidence. Crit Rev Food Sci Nutr 59:141-58. doi:10.1080/10408398.2017.1362630
  10. Chisari M., A. Todaro, R.N. Baragallo, and G. Spagna 2010, Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactucasativa L. cv. Duende). Food Chem 119:1502-1506. doi:10.1016/j.foodchem.2009.09.033
  11. Choi H.G., D.Y. Park, and N.J. Kang 2022, The fruit proteome response to the ripening stages in three tomato genotypes. Plants 11,553. doi:10.3390/plants11040553
  12. Choi S.H. 2021, Polyphenol and flavonoid contents, antioxidative and cancer cell inhibitory effects of domestic tomatoes. JKCA 21:879-887. doi:10.5392/JKCA.2021.21.12.879
  13. Danuta G., W. Agata, J.G. Anna, D. Krzysztof, H. Jadwiga, L.K. Przemyslaw, and W. Jaroslaw 2020, Lycopene in tomatoes and tomato products. Open Chemistry 18:752-756. doi:10.1515/chem-2020-0050
  14. Davey M.W., M. van Montagu, D. Inze, M. Sanmartin, A. Kanellis, N. Smirnoff, I.J. Benzie, J.J. Strain, D. Favell, and J. Fletcher 2000, Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825-860. doi:10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
  15. Davies J.N., and G.E. Hobson 1981, The constituents of tomato fruit the influense of environment, nutrition and genotype. CRC Crit Rev Food Sci Nutr 15: 205-280. doi:10.1080/10408398109527317
  16. Fan L., C. Dube, C. Fang, D. Roussel, M.T. Charles, Y. Desjardins, and S. Khanizadeh 2012, Effect of production systems on phenolic composition and oxygen radical absorbance capacity of 'Orleans' strawberry. LWT-Food Sci Technol 45:241-245. doi:10.1016/j.lwt.2011.09.004
  17. Farneti B., R.E. Schouten, and E.J. Woltering 2012, Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biol Technol 73:22-27. doi:10.1016/j.postharvbio.2012.05.008
  18. Ferreyra R.M., S.Z. Vina, A. Mugridge, and A.R. Chaves 2007, Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Scientia Hort 112:27-32. doi:10.1016/j.scienta.2006.12.001
  19. Fraser P.D., M.R. Truesdale, C.R. Bird, W. Schuch, and P.M. Bramley 1994, Carotenoid biosynthesis during tomato fruit development. Plant Physiol 105:405-413. doi:10.1104/pp.105.1.405
  20. Frenkel C., S.A. Garrison 1976, Initiation of lycopene synthesis in the tomato mutant rin as influenced by oxygen and ethylene interactions. HortSciense 11:20-21. doi:10.21273/HORTSCI.11.1.20
  21. Gest N., H. Gautier, and R. Stevens 2013, Ascorbate as seen through plant evolution: The rise of a successful molecule? J Exp Bot 64:33-53. doi:10.1093/jxb/ers297
  22. Gill S.S., and N. Tureja 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909-930. doi:10.1016/j.plaphy.2010.08.016
  23. Giuntini D., V. Lazzeri, V. Calvenzani, C. Dall'Asta, G. Galaverna, C. Tonelli, K. Petroni, and A. Ranieri 2008, Flavonoid profiling and biosynthetic gene expression in flesh and peel of two tomato genotypes grown under UV-B-depleted conditions during ripening. J Agric Food Chem 56:5905-5915. doi:10.1021/jf8003338
  24. Han H., J.W. Lim, and H. Kim 2019, Lycopene inhibits activation of epidermal growth factor receptor and expression of cyclooxygenase-2 in gastric cancer cells. Nutrients. 2019;11:2113. doi:10.3390/nu11092113
  25. Hernandez I., L. Alegre, F.V. Breusegem, and S. Munne-Bosch 2009, How relevant are flavonoids as antioxidants in plants. Trends Plant Sci 14:125-132. doi:10.1016/j.tplants.2008.12.003
  26. Ho L.C. 1979, Regulation of assimilate translocation between leaves and fruit in the tomato. Ann Bot 43:437-338. doi:10.1093/oxfordjournals.aob.a085654
  27. Howard L.R., R.T. Smith, A.B. Wagner, B. Villalon, and E.E. Burns 1994, Provitamin A and ascorbic acid content of fresh pepper cultivars (Capsicum annum L.) and processed jalapesios. Kor J Food Sci Technol 59:362-365. doi:10.1111/j.1365-2621.1994.tb06967.x
  28. Howard S.R., S.T. Talcott, C.H. Brenes, and B. Villalon B 2000, Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agric Food Chem 48:1713-1720. doi:10.1021/jf990916t
  29. Hwang E.S., and P.E. Bowen 2004, Effects of tomatoes and lycopene on prostate cancer prevention and treatment. J Kor Soc Food Sci Nutr 33:455-462. doi:10.3746/jkfn.2004.33.2.455 (in Korean)
  30. Javanmardi J., and C. Kubota 2006, Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol Technol 41:151-155. doi:10.1016/j.postharvbio.2006.03.008
  31. Kang H.M., and M.E. Saltveit 2002, Antioxidant capacity of lettuce leaf tissue increases after wounding. J Agric Food Chem 50:7536-7541. doi:10.1021/jf020721c
  32. Kim D.H. 1999, Studies on the production of vinegar from fig. J Korean Soc Food Sci Nutr 28:53-60
  33. Kim D.S. 2010, Antioxidant effect and cosmetic application of extracted lycopene from tomato. Master Thesis. Chungbuk National University, Chungju, Korea (in Korean)
  34. Kim H.J., J.M. Fonseca, J.H. Choi, C. Kubota 2007, Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 55:10366-10372. doi:10.1021/jf071927m
  35. Kriengsak T.U., K. Boonprakob, L. Crosby, L. Cisneros-Zevallos, and D.H. Byrne 2006, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimation antioxidant activity from guava fruit extracts. J Food Composition and Anal 19:669-675. doi:10.1016/j.jfca.2006.01.003
  36. Laleye L.C., S.I. Al-Hammadi, B. Jobe, and M.V. Rao 2010, Assessment if lycopene content of fresh tomatoes (Lycopersicon esculentum Mill.) and tomato products in the United Arab Emirates. J Food Agri Environ 8:142-147.
  37. Lee D.S., and H.K. Kim 1989, Carotenoid destruction and nonenzymatic browning during red pepper drying as fruxtions of average moisture content and temperature. Kor J Food Sci Technol 21:425-429 (in Korean)
  38. Lee H.B., C.B. Yang, and T.J. Yu 1972, Studies on the chemical composition of some fruit vegetables and fruits in Korea (I)-On the free amino acid and sugar contents in tomato, watermelon, muskmelon, peach and plum. Kor J Food Sci Technol 4:36-43 (in Korean)
  39. Lee S.O., H.J. Lee, M.H. Yu, H.G. Im, and I.S. Lee 2005, Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Kor J Food Sci Technol 37:233-240 (in Korean)
  40. Li N., X. Wu, W. Zhuang, L. Xia, Y. Chen, C. Wu, Z. Rao, L. Du, R. Zhao, M. Yi, Q. Wan, and Y. Zhou 2021, Tomato and lycopene and multiple health outcomes: Umbrella review. Food Chemistry 343:1-8. doi: doi:10.1016/j.foodchem.2020.128396
  41. Liu C., L. Cai, X. Lu, X. Han, and T. Ying 2012, Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. J Integr Agr 11:159-165. doi:10.1016/S1671-2927(12)60794-9
  42. Liu L.H., D. Zabaras, L.E. Bennett, P. Aguas, and B.W. Woonton 2009, Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chem 115:495-500. doi:10.1016/j.foodchem.2008.12.042
  43. Liu X., S. Ardo, M. Bunning, J. Parry, K. Zhou, C. Stushnoff, F. Stoniker, L. Yu, and P. Kendall 2007, Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Sci Technol 40:552-557. doi:10.1016/j.lwt.2005.09.007
  44. Luthria D.L., S. Mukhopadhyay, and D.T. Krizek 2006, Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. J Food Comp Anal 19:771-777. doi:10.1016/j.jfca.2006.04.005
  45. McDowell L.R. 1989, Vitamins in animal nutrition: Comparative aspects to human nutrition, Vitamin E. 93-131 London: Academic Press.
  46. Mellidou I., and A.K. Kanellis 2017, Genetic control of ascorbic acid biosynthesis and recycling in horticultural crops. Front Chem 5:50. doi:10.3389/fchem.2017.00050
  47. Mellidou I., J. Keulemans, A.K. Kanellis, and M.W. Davey 2012, Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol 12:239. doi:10.1186/1471-2229-12-239
  48. Mellidou I., A. Siomos, J. Keulemans, A. Kanellis, and M.W. Davey 2008, Ascorbic acid biosynthesis during tomato fruit development and ripening. Commun. Agric Appl Biol Sci 73:177-180.
  49. Meredith F.I., and A.E. Purcell 1966, Changes in the concentration of carotenes of ripening Homestead tomatoes. Proc Amer Soc Hort Sci 89:544-548.
  50. Meyers K.J., C.B. Watkins, M.P. Pritts, and R.H. Liu 2003, Antioidant and antiproliferative activities of strawberries. J Agri Food Chem 51:6887-6892. doi:10.1021/jf034506n
  51. Ministry for Agriculture, Food and Rural Affairs (MAFRA) 2021, Agriculture food and rural affairs statistics.
  52. Moing A., C. Renaud, M. Gaudillĕre, P. Raymond, P. Roudeillac, B. Denoyes-Rothan 2001, Biochemical changes during fruit development of four strawberry cultivars. J Amer Soc Hort Sci 126:394-403. doi:10.21273/JASHS.126.4.394
  53. Moure A., J.M. Cruz, D. Franco, J.M. Dominguez, J. Sineiro, H. Dominguez, M.J. Nunez, and J.C. Parajo 2001, Natural antioxidants from residual sources. Food Chem 72:145-171. doi:10.1016/S0308-8146(00)00223-5
  54. Muller L., C. Caris-Veyrat, G. Lowe, and B. Bohm 2016, Lycopene and its antioxidant role in the prevention of cardiovascular diseases-A critical review. Critical Reviews in Food Science and Nutrition 56:1868-1879. doi:10.1080/10408398.2013.801827
  55. Paciolla C., S. Fortunato, N. Dipierro, A. Paradiso, S. DeLeonardis, L. Mastropasqua, and M.C. De-Pinto 2019, Vitamin C in plants: From functions to biofortification. Antioxidants 8:519. doi:10.3390/antiox8110519
  56. Periago M.J., J. Garcia-Alonso, K. Jacob, A.B. Olivares, M.J. Bernal, and, M.D Iniesta 2009, Bioactive compounds, folates, and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Int J Food Sci Nutr 60:694-708. doi:10.3109/09637480701833457
  57. Rao A.V. 2006, Tomatoes, lycopene and human health: Preventing Chronic Diseases. Caledonian Science Press, Scotland.
  58. Rashida E.E., E.L.F. Babiker, and A.H.E. Tinay 1997, Changes in chemical composition of guava fruits during development and ripening. Food Chem 59:359-399. doi:10.1016/S0308-8146(96)00271-3
  59. Rice-Evans C.A., N.J. Miller, and G. Paganga 1996, Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20:933-956. doi:10.1016/0891-5849(95)02227-9
  60. Rice-Evans C.A., and N.J. Miller, and G. Paganga 1997, Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152-159. doi:10.1016/S1360-1385(97)01018-2
  61. Roldan-Gutierrez J.M., M.D.L. De-Castro 2007, Lycopene: The need for better methods for characterization and determination. TrAC Trends in Anal Chem 26:163-170. doi:10.1016/j.trac.2006.11.013
  62. Sauberlich H.E. 1994, Pharmacology of vitamin C. Annu Re Nutr 14:371-391. doi: 10.1146/annurev.nu.14.070194.002103
  63. Smirnoff N. 2018, Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 122:116-129. doi:10.1016/j.freeradbiomed.2018.03.033
  64. Stevens R., M. Buret, P. Duffe, C. Garchery, P. Baldet, C. Rothan, and M. Causse 2007, Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943-1953. doi:10.1104/pp.106.091413
  65. Toor R.K., G.P. Savage, and A. Heeb 2006, Influence of different types of fertilisers on the major antioxidant components of tomatoes. J Food Comp Anal 19:20-27. doi:10.1016/j.jfca.2005.03.003
  66. Treutter D. 2010, Managing phenol contents in crop plants by phytochemical farming and breeding visions and constraints. Int J Mol Sci 11:807-857. doi:10.3390/ijms11030807
  67. Vallverdu-Queralt A., I. Odriozola-Serrano, G. Oms-Oliu, R.M. Lamuela-Raventos, P. Elez-Martinez, and O. Martin-Belloso 2013, Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food chem 141:3131-3138. doi:10.1016/j.foodchem.2013.05.150
  68. Wang S.Y., and P. Millner 2009, Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria × ananassa Duch.). J Agric Food Chem 57:9651-9657. doi:10.1021/jf9020575
  69. Wheeler G.L., M.A. Jones, and N. Smirnoff 1998, The biosynthetic pathway of vitamin C in higher plants. Nat Cell Biol 393:365-369. doi:10.1038/30728