DOI QR코드

DOI QR Code

수직농장에서 약용작물 생산을 위한 8종의 종자 발아 특성

Germination Characteristics of Eight Species for Production of Medicinal Crops in Vertical Farms

  • 이가운 (경상국립대학교 생명자원과학과 ) ;
  • 권혁준 (콜마비앤에이치 ) ;
  • 김예린 (경상국립대학교 생명자원과학과 ) ;
  • 강인제 (경상국립대학교 농업생명과학대학 원예과학부) ;
  • 양규식 (경상국립대학교 농업생명과학대학 원예과학부) ;
  • 조주성 (충북대학교 원예과학과 ) ;
  • 손기호 (경상국립대학교 생명자원과학과)
  • Ga Oun Lee (Department of GreenBio Science, Gyeongsang National University) ;
  • Hyuk Joon Kwon (Ingredient R&D center, HK Kolmar R&D Complex) ;
  • Ye Lin Kim (Department of GreenBio Science, Gyeongsang National University) ;
  • In-Je Kang (Division of Horticultural Science, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Gyu-Sik Yang (Division of Horticultural Science, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Ju-Sung Cho (Department of Horticultural Science, Chungbuk National University) ;
  • Ki-Ho Son (Department of GreenBio Science, Gyeongsang National University)
  • 투고 : 2024.04.01
  • 심사 : 2024.04.22
  • 발행 : 2024.04.30

초록

본 연구는 수직농장에서 고부가가치 작물 생산을 위한 약용 작물 8종에 대한 종자의 형태 및 온도, 광 처리에 따른 발아에 미치는 영향을 확인하였다. 약용 종자 8종을 선별하여 종자의 형태를 종자의 길이, 종자의 너비, 종자의 길이/너비의 비율 및 백립중 측정하였으며, 종자의 수분함량을 확인하였다. 약용 종자 8종을 파종하여 온도(15, 20, 25, 25/15℃) 및 광 처리에 따라 발아율, 발아세, 평균 발아 속도, 평균 발아 일수를 조사하였다. 약용 종자 8종에 따라 각기 다른 종자 형태를 보였다. 종자의 수분함량은 약용 종자 5종에서 20% 이상의 흡수율을 보였다. 50%가 넘는 발아율을 보인 약용 종자는 당귀(참당귀), 더덕, 식방풍(갯기름나물) 및 우슬(쇠무릎) 종자였다. 당귀 종자는 25/15℃ 광 조건에서 발아율이 67.34 ± 4.38%로 보였으며, 더덕 종자는 온도 및 광 처리 조건 모두에서 50% 이상의 발아율과 특히15℃ 암 조건에서 82.67 ± 1.46% 가장 높은 발아율을 보였다. 식방풍 종자는 20℃ 암 조건에서 52.34 ± 1.77%의 발아율을 보였고, 우슬 종자 15℃의 암 조건에서 51.67 ± 3.79%로 가장 높은 발아율을 보였다. 최대 발아세는 더덕 종자에서 74.00 ± 4.94%였습니다. 식방풍 종자에서 최대 평균 발아 일수는 14.94 ± 0.15일이었다. 황기 종자에서 34.19 ± 4.71로 최대 평균 발아 속도를 보였다. 본 연구를 통해 약용 종자별 특성들을 기초로 수직농장에서 생산하기 위해 종자 발아 특성 분석을 통해 당귀, 더덕, 황기 종자가 적합할 것으로 판단된다.

This study confirmed the effects of seed shape, temperature, and light treatment on the germination of eight species of medicinal crops to produce high-value crops in vertical farms. Eight species of medicinal seeds were selected, and the seed shape, seed length, seed width, seed length/width ratio, and one hundred seed weight were measured. The seed moisture content was confirmed. Eight species of medicinal seeds were sown, and the germination rate, germination energy, mean daily germination, and mean germination time were investigated according to temperature (15, 20, 25, 25/15℃) and light treatment. Each of the eight medicinal seeds showed different seed shapes. The moisture content of the seeds showed a moisture content rate of over 20% in the five medicinal seeds. Medicinal seeds that showed a germination rate of over 50% were Angelica gigas Nakai, Codonopsis lanceolata (Siebold & Zucc.) Benth. & Hook.f. ex Trautv., and Achyranthes bidentata Blume var. japonica Miq. seeds. A. gigas seed showed a germination rate of 67.34 ± 4.38% under 25/15℃ light conditions, and C. lanceolata seed showed a germination rate of over 50% under both temperature and light treatment conditions, especially the highest germination rate of 82.67 ± 1.46% under 15℃ dark conditions. Peucedanum japonicum Thunb. seed showed a germination rate of 52.34 ± 1.77% under dark conditions at 20℃, and the highest germination rate was 51.67 ± 3.79% under dark conditions at 15℃. The maximum germination energy was 74.00 ± 4.94% in C. lanceolata seed. The maximum mean daily germination was 14.94 ± 0.15 days in P. japonicum seed. Astragalus penduliflorus Lam. var. dahuricus (DC.) X.Y.Zhu seed showed the highest mean germination time of 34.19 ± 4.71. Through this study, it was determined that A. gigas, C. lanceolata, and A. penduliflours seeds would be suitable for production in vertical farms based on the characteristics of each medicinal seed through analysis of seed germination characteristics.

키워드

과제정보

본 연구는 농림축산식품부가 지원하는 기술사업화지원사업(821037031HD020)과 산업통상자원부와 한국산업기술진흥원의 '월드클래스플러스프로젝트사업'(세부과제번호: P0024386)의 지원을 받아 수행된 연구임.

참고문헌

  1. Bae J.H., S.Y. Park, and M.M. Oh 2017, Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatum in a plant factory with artificial lighting. Hortic Environ Biotechnol 58:357-366. doi:10.1007/s13580-017-0331-x
  2. Baskin C.C., and J.M. Baskin 1998, Seeds: ecology, biogeography, and, evolution of dormancy and germination. Elsevier.
  3. Baskin C.C., and J.M. Baskin 2003, When breaking seed dormancy is a problem try a move along experiment. Native Plants J 4(1):17-21. doi:10.3368/npj.4.1.17
  4. Bunge A.C., A. Wood, A. Halloran, and L.J. Gordon 2022, A systematic scoping review of the sustainability of vertical farming, plant-based alternatives, food delivery services and blockchain in food systems. Nat Food 3(11):933-941. doi:10.1038/s43016-022-00622-8
  5. Cho J.S., J.H. Jeong, S.Y. Kim, and C.H. Lee 2014, Temperature, light and chemical treatment promoting seed germination of Meterostachys sikokiana (Makino) Nakai. Flower Res J 22:54-59. doi:10.11623/frj.2014.22.2.3
  6. Choi H., S.Y. Lee, Y.H. Rhie, J.H. Lee, S.Y. Kim, and K.C. Lee 2018, Seed dormancy type and germination characteristics in Tiarella polyphylla D. Don native to Korea. Korean J Plant Res 31:363-371. doi:10.7732/kjpr.2018.31.4.363
  7. Choi I.L., L. Wang, J.H. Lee, S.J. Han, Y.W. Ko, Y. Kim, and H.M. Kang 2019, Effect of LED and QD-LED (Quantum Dot) treatments on production and quality of red radish (Raphanus sativus L.) sprout. J Bio-Env Con 28(3):265-272. doi:10.12791/KSBEC.2019.28.3.265
  8. Choi J.H., J.G. Lee, E.S. Seong, J.H. Yoo, C.J. Kim, G.H. Lee, Y.S. Ahn, C.B. Park, J.D. Lim, and C.Y. Yu 2 013, The germination characteristics of seed by storage and germination temperature in Astragalus membranaceus. Korean J Med Crop Sci 21(6):461-465. doi:10.7783/KJMCS.2013.21.6.461
  9. Choi S.K. 2003, Effect of temperature on seed germination and seedling growth in medicinal plants of Campanulaceae. Korean J Plant Res 6(2):94-97.
  10. Goto E. 2012, Plant production in a closed plant factory with artificial lighting. Acta Hortic 956:37-49. doi:10.17660/ActaHortic.2012.956.2
  11. Heo J.W., Y.B. Lee, Y.S. Chang, J.T. Lee, and D.B. Lee 2010, Effects of light quality and lighting type using an LED chamber system on Chrysanthemum growth and development cultured in vitro. Korean J Environ Agric 29(4):374-380. doi:10.5338/KJEA.2010.29.4.374
  12. Hwang H.S., J.H. Hwang, J.H. Yun, S.Y. Hwang, J.E. Park, H.E. Oh, S.J. Lee, J.M. Park, and S.J. Hwang 2023, Seed and germination characteristics of Allium koreanum H.J. Choi & B.U. Oh for effective propagation. J Bio-Env Con 32(4):359-365. doi:10.12791/KSBEC.2023.32.4.359
  13. Jang S.N., M.J. Kang, Y.N. Kim, E.J. Jeong, K.M. Cho, J.G. Yun, and K.H. Son 2023, Physiological and biochemical responses of Limonium tetragonum to NaCl concentrations in hydroponic solution. Front Plant Sci 14:1159625. doi:10.3389/fpls.2023.1159625
  14. Ji Y., P. Kusuma, and L.F.M. Marcelis 2023, Vertical farming. Curr Biol 33(11):R471-R473. doi:10.1016/j.cub.2023.02.010
  15. Kalantari F., O.M. Tahir, R.A. Joni, and E. Fatemi 2018, Opportunities and challenges in sustainability of vertical farming: a review. J Landsc Ecol 11(1):35-60. doi:10.1515/jlecol-2017-0016
  16. Kim D.H., B.J. Ahn, H.J. Ahn, Y.S. Ahn, Y.G. Kim, C.G. Park, C.B. Park, S.W. Cha, and B.H. Song 2015, Studies on seed germination characteristics and patterns of protein expression of Achyranthes japonica by treating plant growth regulators and seed primings. Korean J Med Crop Sci 23(1):13-19. doi:10.7783/KJMCS.2015.23.1.13
  17. Kim H.R., and Y.H. You 2013, Effects of red, blue, white, and far-red LED source on growth responses of Wasabia japonica seedlings in plant factory. Hortic Sci Technol 31(4):415-422. doi:10.7235/hort.2013.13011
  18. Kim Y.G., H.S. Yu, H.W. Park, N.S. Seong, and S.Y. Son 2001, Effects of environment and storage condition on germination of Astragalus membranaceus. Korean J Med Crop Sci 9(4):265-268.
  19. Ko C.H., S.Y. Lee, S.I. Oh, E.H. Park, M. Gil, S.H. Kim, and M.J. Yoon 2022, Seed dormancy and germination in Iris laevigata (Iridaceae), a rare species in Korea. Flower Res J 30(2):75-81. doi:10.11623/frj.2022.30.2.05
  20. Kobayashi Y., T. Kotilainen, G. Carmona-Garcia, A. Leip, and H.L. Tuomisto 2022, Vertical farming: a trade-off between land area need for crops and for renewable energy production. J Clean Prod 379(2):134507. doi:10.1016/j.jclepro.2022.134507
  21. Kozai T. 2018, Smart plant factory: the next generation indoor vertical farms. Springer. doi:10.1007/978-981-13-1065-2
  22. Kozai T., and G. Niu 2015, Role of the plant factory with artificial lighting (PFAL) in urban areas. In T Kozai, G Niu, M Takagaki, eds, Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Academic Press, London, UK, pp 7-33. doi:10.1016/B978-0-12-801775-3.00002-0
  23. Kozai T., G. Niu, and M. Takagaki 2019, Plant factory: an indoor vertical farming system for efficient quality food production. Academic press, London, UK.
  24. Lee E.S., T.J. An, Y.I. Kim, W.T. Park, J.H. Lee, Y.G. Kim, J.K. Chang, and M.M. Oh 2019, Seed germination rate and growth characteristics according to ripening stages in Angelica acutiloba Kitagawa. Korean J Med Crop Sci 27(3):167-172. doi:10.7783/KJMCS.2019.27.3.167
  25. Lee G.J., J.W. Heo, H.H. Kim, C.R. Jung, D.E. Kim, and S.Y. Nam 2016, Effects of artificial light sources on growth and yield of Peucedanum japonicum hydroponically grown in plant factory. J Bio-Env Con 25:16-23. doi:10.12791/KSBEC.2016.25.2.77
  26. Lee H.S., J.W. Lee, S.J. Kim, J.H. Lee, J.S. Sung, M.J. Kang, and K.H. Ma 2014, Effects of temperature, light and chemical reagent on dormancy breaking and seed germination of three species in Apiaceae. Korean J Int Agric 26(4):519-525. doi:10.12719/KSIA.2014.26.4.519
  27. Lee J.E., and W.C. Cha 2015, An analysis of the professional's cognition regarding the plant factory feasibility. J Digital Converg 13(12):89-97. doi:10.14400/JDC.2015.13.12.89
  28. Luna-Maldonado A.I., J.A. Vidales-Contreras, and H. Rodriguez-Fuentes 2016, Editiorial: Advances and trends in development of plant factories. Front Plant Sci 7:1848. doi:10.3389/fpls.2016.01848
  29. Madakadze R., M.E. Chirco, and A.A. Khan 1993, Seed Germination of three flower species following matriconditioning under various environments. J Am Soc Hortic Sci 118(3):330-334. doi:10.21273/JASHS.118.3.330
  30. Mao P.S., Y.H. Wang, X.G. Wang, J.J. Lian, and Y. Huang 2008, Conditions and stimulation for germination in Glycyrrhiza uralensis Fisch. seeds. Agric Sci China 7(12):1438-1444. doi:10.1016/S1671-2927(08)60400-9
  31. Merritt D.J., S.R. Turner, S. Clarke, and K.W. Dixon 2007, Seed dormancy and germination stimulation syndromes for Australian temperate species. Aust J Bot 55(3):336-344. doi:10.1071/BT06106
  32. Nikolaeva M.G. 1999, Pattern of seeds dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats. J Russ Plant Physiol 46:369-373.
  33. Park J.H., J.M. Lee, E.J. Kim, and Y.H. You 2022, The effects of LED light quality on ecophysiological and growth responses of Epilobium hirsutum L., a Korean endangered plant, in a smart farm facility. J Ecol Environ 46:16. doi:10.5141/jee.22.021
  34. Satendra K., D.P. Sharma, and R.L. Sakhwar 2016, Plant growth and reproductive potential of red poppy (Papaver rhoeas L.) after iron (FeSO4) fertilization. Plant Archives 16(1):75-77.
  35. SharathKumar M., E. Heuvelink, and L.F.M. Marcelis 2020, Vertical farming: moving from genetic to environmental modification. Trends Plant Sci 25:724-727. doi:10.1016/j.tplants.2020.05.012
  36. Um M., S.Y. Kang, J.W. Lee, and O.R. Lee 2017, Effect of gamma ray on germination, growth and antioxidant activity of Senna tora. Korean J Med Crop Sci 25(5):290-295. doi:10.7783/KJMCS.2017.25.5.290
  37. Van Delden S.H., M. SharathKumar, M. Butturini, L.J.A. Graamans, E. Heuvelink, M. Kacira, E. Kaiser, R.S. Klamer, L. Klerkx, G. Kootstra, A. Loeber, R.E. Schouten, C. Stanghellini, W. Van Ieperen, J.C. Verdonk, S. Vialet-Chabrand, E.J. Woltering, R. Van De Zedde, Y. Zhang, and L.F.M. Marcelis 2021, Current status and future challenges in implementing and upscaling vertical farming systems. Nat Food 2:944-956. doi:10.1038/s43016-021-00402-w
  38. Wada S., and B.M. Reed 2011, Optimized scarification protocols improve germination of diverse Rubus germplasm. Sci Hortic 130:660-664. doi:10.1016/j.scienta.2011.08.023
  39. Yu H.S., B.H. Kang, D.J. Im, C.G. Kim, Y.G. Kim, S.T. Lee, and Y.H. Chang 1995, Effects of temperature, light, GA3 and storage method on germination of Angelica gigas Nakai. Korean J Med Corp Sci 3(1):30-34.
  40. Zobayed S. 2020, Medicinal components. In T Kozai, G Niu, M Takagaki, eds, Plant Factory, 2nd ed. Academic Press, Cambridge, MA, USA, pp 245-250. doi:10.1016/B978-0-12-816691-8.00017-0