DOI QR코드

DOI QR Code

심부 화강암반의 수리특성 평가를 위한 현장수리시험 비교 및 해석 연구

Comparison and Analysis of Field Hydraulic Tests to Evaluate Hydraulic Characteristics in Deep Granite Rockmass

  • 천대성 (한국지질자원연구원) ;
  • 석희준 (한국지질자원연구원) ;
  • 이성곤 (한국지질자원연구원) ;
  • 김태희 (한국지질자원연구원) ;
  • 김기석 ((주)희송지오텍) ;
  • 전성천 ((주)지오그린21) ;
  • 배성호 ((주)지오제니컨설턴트)
  • Dae-Sung Cheon (Korea Institute of Geoscience and Mineral Resources) ;
  • Heejun Suk (Korea Institute of Geoscience and Mineral Resources) ;
  • Seong Kon Lee (Korea Institute of Geoscience and Mineral Resources) ;
  • Tae-Hee Kim (Korea Institute of Geoscience and Mineral Resources) ;
  • Ki Seog Kim (Heesong Geotek, Co., Ltd.) ;
  • Seong-Chun Jun (Geogreen21 Inc.) ;
  • SeongHo Bae (GeoGeny Consultants Group Inc.)
  • 투고 : 2024.08.05
  • 심사 : 2024.08.20
  • 발행 : 2024.08.31

초록

고준위방사성폐기물 처분부지 선정에 있어 부지의 수리지질학적 연구는 매우 중요하며, 수리전도도와 저류계수 등이 대표적 수리지질학적 인자이다. 본 연구는 원주지역 심부 화강암반을 대상으로 두 가지 다른 종류의 현장수리시험 장비와 방법으로 획득한 수리전도도를 비교 분석하여 심부 화강암반의 수리특성을 파악하였다. 하나는 지하수 관정 자동 주입 시스템 장비를 활용하여 최대 심도 602.0 m에 대해 루전시험, 정압주입시험, 슬러그시험을 수행하였고, 산정된 수리전도도는1.26E-9 ~ 4.16E-8 m/s의 범위를 보였다. 전체 심도에서 수리전도도의 최대와 최소 차이는 약 33배로 나타났고, 동일 시험 구간에서 시험 방법이나 해석방법에 의한 차이는 1.13 ~ 8.25배로 나타났다. 다른 하나는 대심도 수리특성 조사 시스템을 활용하여 최대 심도 705.1 m에 대해 정압주입시험, 펄스시험을 수행하여 산정된 수리전도도는 1.60E-10 ~ 2.05E-8 m/s으로 최대와 최소 차이는 약 130배 정도로 나타났다. 정압주입시험에서 해석방법에 따른 차이는 1.02 ~ 2.8 배로 나타났다. 두 시험 장치와 방법에서 산정한 수리전도도는 대체로 E-9와 E-8 m/s로 유사한 범위를 보였으며, 심도에 따른 뚜렷한 경향은 관찰되지 않았다. 현장수리시험이 수행된 원주지역 화강암반은 낮은 또는 매우 낮은 암반투수성을 보임을 알 수 있었고, 적용된 시험 장치와 시험 방법에 따라 측정할 수 있는 수리전도도 범위나 적용 심도 등의 차이가 존재하나 대체로 신뢰할 수 있는 결과를 제시한 것으로 판단된다.

In selecting a disposal site for high-level radioactive waste, the hydrogeological research of the site is very important, and the hydraulic conductivity and the storage coefficient are key parameters. In this study, the hydraulic conductivity obtained by two different types of field hydraulic test equipment and methods was compared and analyzed for the deep granite rockmass in the Wonju area to understand the hydraulic characteristics of the deep granite rockmass. One was to perform the lugeon test, constant pressure injection test, and slug test at a maximum depth of 602.0 m by using the auto pressure/flow injection system, and the calculated hydraulic conductivity ranged from 1.26E-9 to 4.16E-8 m/s. In the overall depth, the maximum and minimum differences of the hydraulic conductivity were found to be about 33 times, and in the same test section, the difference by test method or analysis method was 1.13 to 8.25 times. In the other, the hydraulic conductivity calculated by performing a constant pressure injection test and a pulse test at a maximum depth of 705.1 m using the deep borehole hydraulic testing system was found to be 1.60E-10 to 2.05E-8 m/s, and the maximum and minimum differences were found to be about 130 times. In the constant pressure injection test, the difference depending on the analysis method was found to be 1.02 to 2.8 times. The hydraulic conductivity calculated by the two test equipment and methods generally showed similar ranges as E-9 and E-8 m/s, and no clear trend was observed according to depth. It was found that the granite rockmass in the Wonju area where the field hydraulic test was conducted showed low or very low rockmass permeability, and although there are differences in the range of hydraulic conductivity and the depth of application that can be measured depending on the applied test equipment and test method, it is generally believed that reliable results were presented.

키워드

과제정보

본 논문은 한국지질자원연구원 2024년 기본사업의 하나인 'HLW 심층처분을 위한 지체구조별 암종 심부 특성 연구(GP2020-002;24-3115)' 사업의 지원을 받아 수행하였습니다.

참고문헌

  1. Bae, S.H., Kim, H.S., Kim, J.S., Park, E.S., Jo, Y.U., Ji, T.G., and Won, K.S., 2021, Hydraulic characteristics of deep and low permeable rock masses in Gyeongju area by high precision constant pressure injection test, Tunnel and Underground Space, 31(4), 243-269.
  2. Barker, J.A., 1988, A generalized radial flow model for hydraulic tests in fractured rock, Water Resources Research, 24(10), 1796-1804.
  3. Cheon, D.S., Jin, K., Synn, J.H., Kihm, Y.H., and Jeon, S., 2024, Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics, Tunnel and Underground Space, 34(1), 28-53.
  4. Cheon, D.S., Song, W.K., Kihm, Y.H., Jin, K., and Choi, S., 2022, A study on key parameters and distribution range in rock mechanics for HLW geological disposal, Tunnel & Underground Space, 32(6), 530-548.
  5. Cheong, C. and Kim, N., 2012. Review of radiometric ages for phanerozoic granitoids in southern korean peninsula, Journal of The Petrological Society of Korea, 21(2), p.173-192.
  6. Cooper, H.H., Bredehoeft, J.D., and Papadopulos, S.S., 1967, Response of a finite-diameter well to an instantaneous charge of water, Water Resources Research, 3(1), 263-269.
  7. Houlsby, A.C., 1992, Grouting in rock masses, Engineering in Rock Masses, 334-350.
  8. Hvorslev, M., 1951, Time lag and soil permeability in ground-water observations, Waterways Experiment Station. Corps of Engineers, U.S. Army, Vicksburg, Mississippi, 1-50.
  9. Jacob, C.E. and Lohman, S.W., 1952, Non-steady flow to a well of constant drawdown in an extensive aquifer, Trans. American Geophysics Union, 33(4), 559-569.
  10. KIGAM, 2020, Research on rock properties in deep environment for HLW geological disposal, GP2020-002-2020, Daejeon, Korea.
  11. KIGAM, 2021. Research on rock properties in deep environment for HLW geological disposal, GP2020-002-2021, Daejeon, Korea, 330p.
  12. Lee, H., Park, C. Choi, J, Cheon, D.S., and Park, E.S., 2024, Evaluation of hydrogeological characteristics of deep-depth rock aquifer in volcanic rock area, Tunnel and Underground Space, 34(3), 231-247.
  13. Lee, H., Park, C., Park, E.S., Jung, Y.B., Cheon, D.S., Bae, S.H., Kim, H.M., and Kim, K.S., 2023, Standard procedures and field application case of constant pressure injection test for evaluating hydrogeological characteristics in deep fractured rock aquifer, Tunnel and Underground Space, 33(5), 348-372.
  14. Moyer, D.G., 1967, Diamond drilling for foundation exploration, Civil Engineering Transactions, Institute of Engineering, Austrailia, 95-100.
  15. Park, K.W., Park, B.H., Ko, N.Y., and Ji. S.H., 2020, Applicability of pulse tests to estimate transmissivity in crystalline rock, Jounral of Engineering Geology, 30(3), 223-235.
  16. SKB, 2000, Integrated account of method, site selection and programme prior to the site investigation phase, TR-01-03, Stockholm, Sweden, p. 261