과제정보
이 논문은 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2021R1I1A4A0105729511)의 지원을 받아 수행하였으며, 유전독성시험 분석은 비임상시험수탁전문기관(CRO)인 코아스템켐온(주)의 도움을 받아 진행되었습니다. 이에 감사드립니다.
참고문헌
- Bhowmik, D., Kumar, K.P.S., Paswan, S., Srivastava, S., Tomatoa natural medicine and its health benefits. J. Pharmacogn. Phytochem., 1, 33-43 (2012).
- Borguini, R.G., Ferraz Da Silva Torres, E.A., Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int., 25, 313-325 (2009). https://doi.org/10.1080/87559120903155859
- Toor, R.K., Savage, G.P., Antioxidant activity in different fractions of tomatoes. Food Res. Int., 38, 487-494 (2005). https://doi.org/10.1016/j.foodres.2004.10.016
- Rivero, A.G., Keutgen, A.J., Pawelzik, E., Antioxidant properties of tomato fruit (Lycopersicon esculentum Mill.) as affected by cultivar and processing method. Horticulturae, 8, 547 (2022).
- Fraser, P.D., Truesdale, M.R., Bird, C.R., Schuch, W., Bramley, P.M., Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol., 105, 405-413 (1994). https://doi.org/10.1104/pp.105.1.405
- Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., Luo, Y., Zhu, H., Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci., 9, 559 (2018).
- Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B., Giuliano, G., Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J., 24, 413-419 (2000). https://doi.org/10.1046/j.1365-313x.2000.00880.x
- Galpaz, N., Wang, Q., Menda, N., Zamir, D., Hirschberg, J., Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J., 53, 717-730 (2008). https://doi.org/10.1111/j.1365-313X.2007.03362.x
- Wu, X., Jia, Q., Ji, S., Gong, B., Li, J., Lu, G., Gao, H., Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism. BMC Plant Biol., 20, 465 (2020).
- Nonaka, S., Arai, C., Takayama, M., Matsukura, C., Ezura, H., Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep., 7, 7057 (2017).
- Lino, C.A., Harper, J.C., Carney, J.P., Timlin, J.A., Delivering CRISPR: a review of the challenges and approaches. Drug Deliv., 25, 1234-1257 (2018). https://doi.org/10.1080/10717544.2018.1474964
- Liu, Q., Yang, F., Zhang, J., Liu, H., Rahman, S., Islam, S., Ma, W., She, M., Application of CRISPR/Cas9 in crop quality improvement. Int. J. Mol. Sci., 22, 4206 (2021).
- Lusser, M., Parisi, C., Plan, D., Rodriguez-Cerezo, E., Deployment of new biotechnologies in plant breeding. Nat. Biotechnol., 30, 231-239 (2012). https://doi.org/10.1038/nbt.2142
- Gaj, T., Gersbach, C.A., Barbas, C.F. III., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397-405 (2013).
- Ricroch, A., Clairand, P., Harwood, W., Use of CRISPR systems in plant genome editing: Toward new opportunities in agriculture. Emerg. Top. Life Sci., 1, 169-182 (2017). https://doi.org/10.1042/ETLS20170085
- Waltz, E., GABA-enriched tomato is first CRISPR-edited food to enter market. Nat. Biotechnol., 40, 9-11 (2022). https://doi.org/10.1038/d41587-021-00026-2
- Combs, R., Bilyeu, K., Novel alleles of FAD2-1A induce high levels of oleic acid in soybean oil. Mol. Breeding, 39, 79 (2019).
- Kim, J.Y., Kim, J.H., Jang, Y.H., Yu, J., Bae, S., Kim, M.S., Cho, Y.G., Jung, Y.J., Kang, K.K., Transcriptome and metabolite profiling of tomato SGR-knockout null lines using the CRISPR/Cas9 system. Int. J. Mol. Sci., 24, 109 (2023).
- Kim, J.M., Park, H.R., Plan for establishing cooperative governance of biotechnology policy-focusing on enhancing social acceptance of gene editing technology. Korean Public Manag. Rev., 37, 145-167 (2023).
- Kang, D.M., Kwon, J.M., Jeong, W.J., Jung, Y.J., Kang, K.K., Ahn, M.J., Antioxidant constituents and activities of the pulp with skin of Korean tomato cultivars. Molecules, 27, 8741 (2022).
- Kim, H.J., Park, W.S., Bae, J.Y., Kang, S.Y., Yang, M.H., Lee, S., Lee, H.S., Kwak, S.S., Ahn, M.J., Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. J. Food Compost. Anal., 41, 188-193 (2015). https://doi.org/10.1016/j.jfca.2015.01.012
- Tilahun, S., Choi, H.R., Baek, M.W., Cheol, L.H., Kwak, K.W., Park, D.S., Solomon, T., Jeong, C.S., Antioxidant properties, γ-aminobutyric acid (GABA) content, and physicochemical characteristics of tomato cultivars. Agronomy, 11, 1204 (2021).
- Organisation for Economic Cooperation and Development (OECD), 2020. Test No. 471: bacterial reverse mutation test, OECD Publishing, Paris, France, pp. 1-11.
- Maron, D.M., Ames, B.N., Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-215 (1983). https://doi.org/10.1016/0165-1161(83)90010-9
- Organisation for Economic Cooperation and Development (OECD), 2016. Test No. 473: In Vitro mammalian chromosomal aberration test, OECD Publishing, Paris, France, pp. 1-22.
- Japanese Environmental Mutagen Society- Mammalian Mutagenicity Study Group (JEMS-MMS), 1988. Atlas of chromosome aberration by chemicals, Tokyo, Japan.
- Organisation for Economic Cooperation and Development (OECD), 2016. Test No. 474: mammalian erythrocyte micronucleus test, OECD Publishing, Paris, France, pp. 1-21.
- Stroda, K.A., Murphy, J.D., Hansen, R.J., Brownlee, L., Atencio, E.A., Gustafson, D.L., Lana, S.E., Pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide in cats after oral, intravenous, and intraperitoneal administration of cyclophosphamide. Am. J. Vet. Res, 78, 862-866 (2017). https://doi.org/10.2460/ajvr.78.7.862
- Schmid, W., The micronucleus test. Mutat. Res., 31, 9-15 (1975). https://doi.org/10.1016/0165-1161(75)90058-8
- Hayashi, M., Sofuni, T., Ishidate, M.Jr., An application of acridine orange fluorescent staining to the micronucleus test. Mutat. Res., 120, 241-247 (1983). https://doi.org/10.1016/0165-7992(83)90096-9
- Ku, J., Hwang, J.H., Genotoxicity evaluation using reversion mutation test of SU-Eohyeol pharmacopuncture. J. Physiol. Pathol. Korean Med., 36, 113-119 (2022). https://doi.org/10.15188/kjopp.2022.08.36.4.113
- Kim, H.B., Park, H.U, Lee, J.Y., Kwon, H.J., Lack of Mutagenecity of green pigments in Salmonella typhimurium. J. Food Hyg. Safety, 26, 242-247 (2011).
- Yun, J.H., Park, I.J., Park, S.H., Choi, G.H., Kim, H.J., Cho, J.H., Genotoxicity study of Litsea japonica fruit flesh extract. J. Food Hyg. Saf., 33, 207-213 (2018).
- Hong, S.G., Chung, S.G., Hyun, S.H., The micronucleus test of the diglyceride preparation with conjugated linoleic acid by using mice. J. Korea Soc. Food Sci. Nutr., 37, 853-857 (2008). https://doi.org/10.3746/jkfn.2008.37.7.853
- Scolastici, C., Alves de Lima, R.O., Barbisan, L.F., Ferreira, A.L., Ribeiro, D.A., Salvadori, D.M., Antigenotoxicity and antimutagenicity of lycopene in HepG2 cell line evaluated by the comet assay and micronucleus test. Toxicol In Vitro, 22, 510-514 (2008). https://doi.org/10.1016/j.tiv.2007.11.002
- Nicolia, A., Manzo, A., Veronesi, F., Rosellini, D., An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 34, 77-88 (2014). https://doi.org/10.3109/07388551.2013.823595