DOI QR코드

DOI QR Code

자동 치관 형성 인공지능 프로그램을 이용한 단일 고정성 보철물 수복 증례

Single-unit fixed restoration using the automated crown shaping artificial intelligence program

  • 박은비 (단국대학교 치과대학 치과보철학교실) ;
  • 조영은 (단국대학교 치과대학 치과보철학교실)
  • Eun-Bi Park (Department of Prosthodontics, School of Dentistry, Dankook University) ;
  • Young-Eun Cho (Department of Prosthodontics, School of Dentistry, Dankook University)
  • 투고 : 2024.05.20
  • 심사 : 2024.07.12
  • 발행 : 2024.08.31

초록

최근 인공지능을 치의학 분야에 접목하려는 다양한 시도들이 제안되었다. 기존의 고정성 보철물 제작방식인 CAD-CAM(computer-aided design-computer-aided manufacturing)의 한계를 극복하기 위해 자동 치관 형성 인공지능 프로그램이 발전 중에 있고 최근 상용화를 위해 관련된 다양한 연구들이 진행되고 있다. 본 증례들은 전치부 및 구치부의 단일치를 AI (Artificial intelligence) 프로그램(Dentbird Crown, Imagoworks Inc, Seoul, Korea)을 이용하여 고정성 보철물을 제작하였고 기존의 방식들과 적합도를 비교하고자 하였다. 첫번째 증례는 44세 여환으로, 상악 우측 측절치 설측에 보철물 파절을 주소로 보철물 재제작을 위해 내원하였다. 두번째 증례는 53세 남환으로 상악 좌측 제1대구치 근관 치료 후 크라운 수복 위해 내원하였고 두 증례 모두 지르코니아로 최종 수복하였다. 본 증례들에서 CAD 프로그램을 이용해 수작업으로 디자인한 보철물, AI만을 활용하여 디자인한 보철물, AI를 활용한 후 수작업으로 디자인을 수정한 보철물을 제작 후, 세 가지 디자인을 중첩하여 적합도를 비교하였다. 임시 장착 후 평가 시 안정적인 교합양상을 보였으며, 심미적 및 기능적으로 만족할만한 결과를 보였기에 이를 보고하고자 한다.

Recently, several attempts have been made to integrate AI into the field of dentistry. To overcome the limitations of traditional fixed prosthetic fabrication methods such as CAD-CAM (computer-aided design-computer-aided manufacturing), AI programs are being developed for automated crown fabrication, and various studies are underway to applicate in clinical situation. In these case studies, single-unit fixed prostheses were fabricated using an AI program (Dentbird Crown, Imagoworks Inc, Seoul, Korea) in both the anterior and posterior regions and the fabrication time and accuracy were compared with previously used CAD-CAM method. The first case is a 44-year-old woman who presented for re-fabrication of a zirconia prosthesis due to a prosthesis fracture on the lingual side of the upper right lateral incisor. The second case is a 53-year-old male patient who presented for a crown restoration on an upper left first molar following root canal treatment, where he received a final zirconia restoration. In both cases, the first prosthesis was designed manually using a CAD program, the second prosthesis was designed using AI alone, and the third prosthesis was designed using AI and then modified by CAD program, and the three designs were superimposed to compare suitability. When evaluated after temporary placement, the final prosthesis demonstrates adequate stability, retention and support, resulting in functional and esthetic satisfaction.

키워드

참고문헌

  1. Nguyen TT, Larrivee N, Lee A, Bilaniuk O, Durand R. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J Can Dent Assoc 2021;87:l7.
  2. Li L, Chen H, Li W, Wang Y, Sun Y. The effect of residual dentition on the dynamic adjustment of wear facet morphology on a mandibular first molar crown. J Prosthodont 2021;30:351-5. https://doi.org/10.1111/jopr.13290
  3. Li L, Chen H, Zhao Y, Wang Y, Sun Y. Design of occlusal wear facets of fixed dental prostheses driven by personalized mandibular movement. J Prosthet Dent 2022;128:33-41. https://doi.org/10.1016/j.prosdent.2020.09.055
  4. Revilla-Leon M, Gomez-Polo M, Vyas S, Barmak AB, Gallucci GO, Att W, Ozcan M, Krishnamurthy VR. Artificial intelligence models for toothsupported fixed and removable prosthodontics: A systematic review. J Prosthet Dent 2023;129:276-92. https://doi.org/10.1016/j.prosdent.2021.06.001
  5. Chau RCW, Hsung RT, McGrath C, Pow EHN, Lam WYH. Accuracy of artificial intelligence-designed single-molar dental prostheses: A feasibility study. J Prosthet Dent 2024;131:1111-7. https://doi.org/10.1016/j.prosdent.2022.12.004
  6. Shan T, Tay FR, Gu L. Application of Artificial Intelligence in Dentistry. J Dent Res 2021;100:232-44. https://doi.org/10.1177/0022034520969115
  7. Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int 2020;51:248-57.
  8. Gurke S. Restoration of teeth by geometrically deformable models. In: Girod B, Niemann H, editors. Seidel H-P: 3D Image Analysis and Synthesis '97. Infix: Proceedings Sankt Augustin; 1997.
  9. Paulus D, Wolf M, Meller S, Niemann H. Threedimensional computer vision for tooth restoration. Med Image Anal 1999;3:1-19. https://doi.org/10.1016/S1361-8415(99)80013-9
  10. Blanz V, Mehl A, Vetter T, Seidel HP. A statistical method for robust 3D surface reconstruction from sparse data. In: Aloimonos Y, Taubin G, editors. Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission. Los Alamitos; IEEE; 2004. p. 293-300.
  11. Mehl A, Blanz V. New procedure for fully automatic occlusal surface reconstruction by means of a biogeneric tooth model. Int J Comput Dent 2005;8:13-25.
  12. Sporring J, Jensen KH. Bayes reconstruction of missing teeth. J Mathematical Imag Vision 2008;31:245-54. https://doi.org/10.1007/s10851-008-0081-6
  13. Ender A, Mormann WH, Mehl A. Efficiency of a mathematical model in generating CAD/CAMpartial crowns with natural tooth morphology. Clin Oral Investig 2011;15:283-9.
  14. Zheng SX, Li J, Sun QF. A novel 3D morphing approach for tooth occlusal surface reconstruction. Comput Aided Des 2011;43:293-302. https://doi.org/10.1016/j.cad.2010.11.003
  15. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning with applications in R. New York; Springer; 2013.
  16. Goodfellow I, Bengio Y, Courville A. Deep learning. 1st ed. Cambridge; MIT Press; 2016.
  17. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Commun ACM. 2020;63:139-44. https://doi.org/10.1145/3422622
  18. Tian S, Wang M, Dai N, Ma H, Li L, Fiorenza L, Sun Y, Li Y. DCPR-GAN: Dental Crown Prosthesis Restoration Using Two-Stage Generative Adversarial Networks. IEEE J Biomed Health Inform 2022;26:151-60.  https://doi.org/10.1109/JBHI.2021.3119394