DOI QR코드

DOI QR Code

Effect of fabrication method and surface polishing on the surface roughness and microbial adhesion of provisional restoration

임시 수복물의 제작 방식과 표면 연마가 표면 거칠기와 세균 부착에 미치는 영향

  • Yeon-Ho Jung (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Hyun-Jun Kong (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Yu-Lee Kim (Department of Prosthodontics, College of Dentistry, Wonkwang University)
  • 정연호 (원광대학교 치과대학 치과보철학교실) ;
  • 공현준 (원광대학교 치과대학 치과보철학교실) ;
  • 김유리 (원광대학교 치과대학 치과보철학교실)
  • Received : 2024.07.12
  • Accepted : 2024.07.29
  • Published : 2024.08.31

Abstract

Purpose: This study aims to investigate the effects of provisional restoration fabrication methods and surface polishing on surface roughness and microbial adhesion through in vitro experiments. Materials and Methods: 120 cylindrical provisional restoration resin blocks (10 × 10 × 2.5 mm) were manufactured according to four fabrication methods, and 30 specimens were assigned to each group. Afterwards, they were divided into non-polishing group, #400 grit SiC polishing group, and #800 grit SiC polishing group and polished to a 10 × 10 × 2 mm specimen size (n = 10). The surface roughness Ra and Ry of the specimen was measured using a Surface Roughness Tester. Three specimens were extracted from each group and were coated with artificial saliva, and then Streptococcus mutans were cultured on the specimens at 37℃ for 4 hours. The cultured specimens were fixed to fixatives and photographed using a scanning electron microscope. For statistical analysis, the two way of ANOVA was performed for surface roughness Ra and Ry, respectively, and the surface roughness was tested post-mortem with a Scheffe test. Results: The fabrication method and the degree of surface polishing of the provisional restorations had a significant effect on both surface roughness Ra and Ry, and had an interaction effect. There was no significant difference in Ra and Ry values in all polishing groups in DLP and LCD groups. Conclusion: The fabrication method and surface polishing of the provisional restoration had a significant effect on surface roughness and showed different adhesion patterns for S. mutans adhesion.

목적: 본 연구의 목적은 임시 수복물의 제작 방법과 표면 연마가 표면 거칠기와 세균 부착에 미치는 영향을 in vitro 실험을 통해 알아보고자 함이다. 연구 재료 및 방법: 120개의 원통형 임시 수복 레진 블록(10 × 10 × 2.5 mm)을 네 가지 제작 방식(Conventional, CAD/CAM milling, DLP 3D printing, LCD 3D printing)에 따라 제작하였고, 각 군당 30개의 시편을 배정하였다. 이후 연마를 시행하지 않은 군(NP), #400 grit SiC 연마군, #800 grit SiC 연마군으로 나누어 10 × 10 × 2 mm 시편 사이즈가 되도록 연마하였다(n = 10). 표면조도측정기(Surftest Extreme SV-3000S4, Mitutoyo, Kanagawa, Japan)를 이용하여 시편의 표면 거칠기 Ra와 Ry를 측정하였다. 각 군에서 3개의 시편을 추출하여 시편을 인공 타액으로 코팅 후, 시편에 Streptococcus mutans를 4시간 동안 37℃에서 배양하였다. 배양한 시편을 고정액에 고정시켜 주사전자현미경(S-4800, Hitachi, Chiyoda, Japan) 사진을 촬영하였다. 통계 분석은 표면 거칠기 Ra, Ry에 대해 각각 two-way ANOVA (P = 0.05) 후 Scheffe test (P = 0.05)로 사후 검정 시행하였다. 결과: 임시 수복물의 제작 방식과 표면 연마 정도는 표면 거칠기 Ra와 Ry 모두에 유의한 영향을 주었고, 상호작용 효과가 있었다. Ra 값은 NP 군에서 제작 방식에 따라 유의한 차이가 있었다. Ry 값은 NP, #800 군에서 제작 방식에 따라 유의한 차이가 있었다. DLP와 LCD 군은 모든 연마군에서 Ra, Ry 값이 유의한 차이가 없었다. 결론: 임시 수복물의 제작 방식과 표면 연마는 표면 거칠기에 유의한 영향을 보였고 S. mutans 부착에 대해 다른 부착 양상을 보였다.

Keywords

Acknowledgement

이 논문은 2023학년도 원광대학교 교비지원에 의해서 연구됨.

References

  1. Lee EJ, Kang JK, Kim KN. Physical and Mechanical Properties of Light-Cured Resin Temporary Restorative Materials. Korean J Dent Mater 2012;39:225-332. 
  2. Tjan AH, Castelnuovo J, Shiotsu G. Marginal fidelity of crowns fabricated from six proprietary provisional materials. J Prosthet Dent 1997;77:482-5.  https://doi.org/10.1016/S0022-3913(97)70140-9
  3. Burns DR, Beck DA, Nelson SK; Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90:474-97.  https://doi.org/10.1016/S0022-3913(03)00259-2
  4. Tallarico M. Computerization and digital workflow in medicine: Focus on digital dentistry. Materials 2020;13:2172. 
  5. Kim KB, Kim JH, Kim WC, Kim JH. Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J Prosthet Dent 2014;112:1432-6.  https://doi.org/10.1016/j.prosdent.2014.07.002
  6. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent 2015;114:414-9.  https://doi.org/10.1016/j.prosdent.2015.03.007
  7. Shin MS. Effect of milling tool wear on the internal fit of PMMA implant interim prosthesis. J Tech Dent 2019;41:63-9.  https://doi.org/10.14347/kadt.2019.41.2.63
  8. Digholkar S, Madhav VNV, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc 2016;16:328-34.  https://doi.org/10.4103/0972-4052.191288
  9. Stampfl J, Liska R. New materials for rapid prototyping applications. Macromol Chem Phys 2005;206:1253-6.  https://doi.org/10.1002/macp.200500199
  10. Park SJ, Lee HA, Lee SH, Seok S, Lim BS, Kwon JS, Kim KM. Comparison of physical properties of the various 3D printing temporary crown and bridge resin. Korean J Dent Mater 2019;46:139-52.  https://doi.org/10.14815/kjdm.2019.46.3.139
  11. Tsolakis IA, Papaioannou W, Papadopoulou E, Dalampira M, Tsolakis AI. Comparison in Terms of Accuracy between DLP and LCD Printing Technology for Dental Model Printing. Dent J (Basel) 2022;10:181. 
  12. Buergers R, Rosentritt M, Handel G. Bacterial adhesion of Streptococcus mutans to provisional fixed prosthodontic material. J Prosthet Dent 2007; 98:461-9.  https://doi.org/10.1016/S0022-3913(07)60146-2
  13. Koroglu A, Sahin O, Dede DO, Yilmaz B. Effect of different surface treatment methods on the surface roughness and color stability of interim prosthodontic materials. J Prosthet Dent 2016;115:447-55.  https://doi.org/10.1016/j.prosdent.2015.10.005
  14. Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S. Influence of surface properties of resin-based composites on in vitro S treptococcus mutans biofilm development. Eur J Oral Sci 2012;120:458-65.  https://doi.org/10.1111/j.1600-0722.2012.00983.x
  15. Barbosa GK, Zavanelli RA, Guilherme AS. Efeito de diferentes tecnicas de acabamento e polimento sobre a rugosidade de resinas acrilicas utilizadas para restauracoes provisorias. Cienc Odontol Bras 2009;12:15-22.  https://doi.org/10.14295/bds.2009.v12i1.248
  16. Rutkunas V, Sabaliauskas V. Effects of different repolishing techniques on colour change of provisional prosthetic materials. Stomatologija 2009;11:102-12. 
  17. Scheibe KG, Almeida KG, Medeiros IS, Costa JF, Alves CM. Effect of different polishing systems on the surface roughness of microhybrid composites. J Appl Oral Sci 2009;17:21-6.  https://doi.org/10.1590/S1678-77572009000100005
  18. Apolinario TA, Sampaio Filho HR, Gouvea CV, Vanzillotta PS, Oliveira DP. Efeito de diferentes bebidas na superficie de resinas acrilicas autopolimerizaveis submetidas a dois tipos de polimento. Rev Bras Odontol 2011;88:8-11. 
  19. Guler AU, Kurt S, Kulunk T. Effects of various finishing procedures on the staining of provisional restorative materials. J Prosthet Dent 2005;93:453-8.  https://doi.org/10.1016/j.prosdent.2005.02.001
  20. Tupinamba IVM, Giampa PCC, Rocha IAR, Lima EMCX. Effect of different polishing methods on surface roughness of provisional prosthetic materials. J Indian Prosthodont Soc 2018;18:96-101.  https://doi.org/10.4103/jips.jips_258_17
  21. Ho TK, Satterthwaite JD, Silikas N. The effect of chewing simulation on surface roughness of resin composite when opposed by zirconia ceramic and lithium disilicate ceramic. Dent Mater 2018;34:e15-24.  https://doi.org/10.1016/j.dental.2017.11.014
  22. Young HM, Smith CT, Morton D. Comparative in vitro evaluation of two provisional restorative materials. J Prosthet Dent 2001;85:129-32.  https://doi.org/10.1067/mpr.2001.112797
  23. Scurria MS, Powers JM. Surface roughness of two polished ceramic materials. J Prosthet Dent 1994;71:174-7.  https://doi.org/10.1016/0022-3913(94)90027-2
  24. Ayad MF, Rosenstiel SF, Hassan MM. Surface roughness of dentine after tooth preparation with different rotary instrumentation. J Prosthet Dent 1996;75:122-8.  https://doi.org/10.1016/S0022-3913(96)90087-6
  25. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, Van Steenberghe D. The influence of abutment surface soughness on plque accumu lation and peri-implant mucositis. Clin Oral Implants Res 1996;7:201-11.  https://doi.org/10.1034/j.1600-0501.1996.070302.x
  26. Weitman RT, Eames WB. Plaque accumulation on composite surfaces after various finishing procedures. J Am Dent Assoc 1975;91:101-6.  https://doi.org/10.14219/jada.archive.1975.0294
  27. Sen D, Goller G, Issever H. The effect of two polishing pastes on the surface roughness of bis-acryl composite and methacrylate-based resin. J Prosthet Dent 2002;88:527-32.  https://doi.org/10.1067/mpr.2002.129335
  28. Augusto MG, de Andrade GS, Caneppele TMF, Borges AB, Torres CRG. Nanofilled bis-acryl composite resin materials: Is it necessary to polish? J Prosthet Dent 2020;124:494.e1-5.  https://doi.org/10.1016/j.prosdent.2020.03.015
  29. Shim JS, Kim HC, Park SI, Yun HJ, Ryu JJ. Comparison of Various Implant Provisional Resin Materials for Cytotoxicity and Attachment to Human Gingival Fibroblasts. Int J Oral Maxillofac Implants 2019;34:390-6.  https://doi.org/10.11607/jomi.6707
  30. Koroglu A, Sahin O, Dede DO, Yilmaz B. Effect of different surface treatment methods on the surface roughness and color stability of interim prosthodontic materials. J Prosthet Dent 2016;115:447-55.  https://doi.org/10.1016/j.prosdent.2015.10.005
  31. Nassary Zadeh P, Lumkemann N, Eichberger M, Stawarczyk B, Kollmuss M. Differences in Radiopacity, Surface Properties, and Plaque Accumulation for CAD/CAM-Fabricated vs Conventionally Processed Polymer-based Temporary Materials. Oper Dent 2020;45:407-15.  https://doi.org/10.2341/19-057-L
  32. Giti R, Dabiri S, Motamedifar M, Derafshi R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS One 2021;16:e0249551. 
  33. Simoneti DM, Pereira-Cenci T, Dos Santos MBF. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent 2022;127:168-72.  https://doi.org/10.1016/j.prosdent.2020.06.026
  34. Alt V, Hannig M, Wostmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 2011;27:339-47.  https://doi.org/10.1016/j.dental.2010.11.012
  35. Hao Y, Huang X, Zhou X, Li M, Ren B, Peng X, Cheng L. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int J Mol Sci 2018;19:3157.