Acknowledgement
The authors would like to thank the reviewer for his/her comments and for correcting an error in an earlier version. The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2021R1I1A3047469).
References
- M. T. Ahmed, C. Bakkari, N. Mahdou, and A. Riffi, Graded pseudo-valuation domains, Comm. Algebra 48 (2020), no. 11, 4555-4568. https://doi.org/10.1080/00927872.2020.1766057
- M. T. Ahmed, C. Bakkari, N. Mahdou, and A. Riffi, A characterization of graded pseudo-valuation domains, J. Algebra Appl. 22 (2023), no. 2, Paper No. 2350044, 14 pp. https://doi.org/10.1142/S0219498823500445
- M. T. Ahmed, M. Issoual, and N. Mahdou, Graded (m, n)-closed and graded weakly (m, n)-closed ideals, Moroc. J. Algebra Geom. Appl. 1 (2022), no. 2, 392-401.
- D. D. Anderson, D. F. Anderson, and G. W. Chang, Graded-valuation domains, Comm. Algebra 45 (2017), no. 9, 4018-4029. https://doi.org/10.1080/00927872.2016.1254784
- D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canadian J. Math. 32 (1980), no. 2, 362-384. https://doi.org/10.4153/CJM-1980-029-2
- A. Assarrar, N. Mahdou, U. Tekir, and S. Koc, On graded coherent-like properties in trivial ring extensions, Boll. Unione Mat. Ital. 15 (2022), no. 3, 437-449. https://doi.org/10.1007/s40574-021-00312-6
- A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra 28 (2000), no. 5, 2343-2358. https://doi.org/10.1080/00927870008826964
- A. Badawi, Pseudo-valuation domains: a survey, Mathematics & Mathematics Education (Bethlehem, 2000), 38-59, World Sci. Publ., River Edge, NJ, 2002.
- A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Commutative Ring Theory (Fes, 1995), 57-67, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997.
- A. Badawi and D. E. Dobbs, Some examples of locally divided rings, Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999), 73-83, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
- D. E. Dobbs, A. El Khalfi, and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra 47 (2019), no. 5, 2060-2077. https://doi.org/10.1080/00927872.2018.1527926
- S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0084570
- N. Guennach, N. Mahdou, U. Tekir, and S. Koc, On graded (1, r)-ideals, Asian-Eur. J. Math. 16 (2023), no. 12, Paper No. 2350222, 20 pp. https://doi.org/10.1142/S1793557123502224
- F.-Z. Guissi, H. Kim, and N. Mahdou, The structure of prime homogeneous ideals in graded amalgamated algebra along an ideal, J. Algebra Appl. 2025 (2023), Paper No. 2550106, 19 pp. https://doi.org/10.1142/S0219498825501063
- F. Z. Guissi, H. Kim, and N. Mahdou, Graded amalgamated algebras along an ideal, J. Algebra Appl. 23 (2024), no. 6, Paper No. 2450116, 19 pp. https://doi.org/10.1142/S0219498824501160
- J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. http://projecteuclid.org/euclid.pjm/1102810151 102810151
- J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- R. Jahani-Nezhad and F. Khoshayand, Pseudo-almost valuation rings, Bull. Iranian Math. Soc. 41 (2015), no. 4, 815-824.
- H. Li, On monoid graded local rings, J. Pure Appl. Algebra 216 (2012), no. 12, 2697-2708. https://doi.org/10.1016/j.jpaa.2012.03.031
- C. Nastasescu and F. Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, 1836, Springer, Berlin, 2004. https://doi.org/10.1007/b94904
- D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, London, 1968.
- M. Refai, M. Hailat, and S. Obiedat, Graded radicals on graded prime spectra, Far East J. of Math. Sci., part I (2000), 59-73.
- A. Riffi, A note on Badawi-Dobbs paper "Some examples of locally divided rings", Palest. J. Math., 13 (2024), no. 2, 349-349.
- P. Sahandi, On graded pseudo-valuation domains, Comm. Algebra 50 (2022), no. 1, 247-254. https://doi.org/10.1080/00927872.2021.1955909
- P. Sahandi, Corrigendum: On graded pseudo-valuation domains, Comm. Algebra 50 (2022), no. 12, 5477-5478. https://doi.org/10.1080/00927872.2022.2085290