DOI QR코드

DOI QR Code

GRADED PSEUDO-VALUATION RINGS

  • Fatima-Zahra Guissi (Laboratory of Modelling and Mathematical Structures Department of Mathematics Faculty of Science and Technology of Fez University S. M. Ben Abdellah) ;
  • Hwankoo Kim (School of Computer and Information Engineering Hoseo University) ;
  • Najib Mahdou (Laboratory of Modelling and Mathematical Structures Department of Mathematics Faculty of Science and Technology of Fez University S.M. Ben Abdellah)
  • Received : 2023.07.09
  • Accepted : 2024.04.30
  • Published : 2024.09.01

Abstract

Let R = ⊕α∈Γ Rα be a commutative ring graded by an arbitrary torsionless monoid Γ. A homogeneous prime ideal P of R is said to be strongly homogeneous prime if aP and bR are comparable for any homogeneous elements a, b of R. We will say that R is a graded pseudo-valuation ring (gr-PVR for short) if every homogeneous prime ideal of R is strongly homogeneous prime. In this paper, we introduce and study the graded version of the pseudo-valuation rings which is a generalization of the gr-pseudo-valuation domains in the context of arbitrary Γ-graded rings (with zero-divisors). We then study the possible transfer of this property to the graded trivial ring extension and the graded amalgamation. Our goal is to provide examples of new classes of Γ-graded rings that satisfy the above mentioned property.

Keywords

Acknowledgement

The authors would like to thank the reviewer for his/her comments and for correcting an error in an earlier version. The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2021R1I1A3047469).

References

  1. M. T. Ahmed, C. Bakkari, N. Mahdou, and A. Riffi, Graded pseudo-valuation domains, Comm. Algebra 48 (2020), no. 11, 4555-4568. https://doi.org/10.1080/00927872.2020.1766057
  2. M. T. Ahmed, C. Bakkari, N. Mahdou, and A. Riffi, A characterization of graded pseudo-valuation domains, J. Algebra Appl. 22 (2023), no. 2, Paper No. 2350044, 14 pp. https://doi.org/10.1142/S0219498823500445
  3. M. T. Ahmed, M. Issoual, and N. Mahdou, Graded (m, n)-closed and graded weakly (m, n)-closed ideals, Moroc. J. Algebra Geom. Appl. 1 (2022), no. 2, 392-401.
  4. D. D. Anderson, D. F. Anderson, and G. W. Chang, Graded-valuation domains, Comm. Algebra 45 (2017), no. 9, 4018-4029. https://doi.org/10.1080/00927872.2016.1254784
  5. D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canadian J. Math. 32 (1980), no. 2, 362-384. https://doi.org/10.4153/CJM-1980-029-2
  6. A. Assarrar, N. Mahdou, U. Tekir, and S. Koc, On graded coherent-like properties in trivial ring extensions, Boll. Unione Mat. Ital. 15 (2022), no. 3, 437-449. https://doi.org/10.1007/s40574-021-00312-6
  7. A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra 28 (2000), no. 5, 2343-2358. https://doi.org/10.1080/00927870008826964
  8. A. Badawi, Pseudo-valuation domains: a survey, Mathematics & Mathematics Education (Bethlehem, 2000), 38-59, World Sci. Publ., River Edge, NJ, 2002.
  9. A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Commutative Ring Theory (Fes, 1995), 57-67, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997.
  10. A. Badawi and D. E. Dobbs, Some examples of locally divided rings, Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999), 73-83, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
  11. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
  12. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
  13. D. E. Dobbs, A. El Khalfi, and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra 47 (2019), no. 5, 2060-2077. https://doi.org/10.1080/00927872.2018.1527926
  14. S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0084570
  15. N. Guennach, N. Mahdou, U. Tekir, and S. Koc, On graded (1, r)-ideals, Asian-Eur. J. Math. 16 (2023), no. 12, Paper No. 2350222, 20 pp. https://doi.org/10.1142/S1793557123502224
  16. F.-Z. Guissi, H. Kim, and N. Mahdou, The structure of prime homogeneous ideals in graded amalgamated algebra along an ideal, J. Algebra Appl. 2025 (2023), Paper No. 2550106, 19 pp. https://doi.org/10.1142/S0219498825501063
  17. F. Z. Guissi, H. Kim, and N. Mahdou, Graded amalgamated algebras along an ideal, J. Algebra Appl. 23 (2024), no. 6, Paper No. 2450116, 19 pp. https://doi.org/10.1142/S0219498824501160
  18. J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. http://projecteuclid.org/euclid.pjm/1102810151 102810151
  19. J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  20. R. Jahani-Nezhad and F. Khoshayand, Pseudo-almost valuation rings, Bull. Iranian Math. Soc. 41 (2015), no. 4, 815-824.
  21. H. Li, On monoid graded local rings, J. Pure Appl. Algebra 216 (2012), no. 12, 2697-2708. https://doi.org/10.1016/j.jpaa.2012.03.031
  22. C. Nastasescu and F. Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, 1836, Springer, Berlin, 2004. https://doi.org/10.1007/b94904
  23. D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, London, 1968.
  24. M. Refai, M. Hailat, and S. Obiedat, Graded radicals on graded prime spectra, Far East J. of Math. Sci., part I (2000), 59-73.
  25. A. Riffi, A note on Badawi-Dobbs paper "Some examples of locally divided rings", Palest. J. Math., 13 (2024), no. 2, 349-349.
  26. P. Sahandi, On graded pseudo-valuation domains, Comm. Algebra 50 (2022), no. 1, 247-254. https://doi.org/10.1080/00927872.2021.1955909
  27. P. Sahandi, Corrigendum: On graded pseudo-valuation domains, Comm. Algebra 50 (2022), no. 12, 5477-5478. https://doi.org/10.1080/00927872.2022.2085290