DOI QR코드

DOI QR Code

A Study on Lung-Kidney Crosstalk in Eastern-Western Medicine

폐(肺)와 신(腎)의 상호작용에 관한 동서의학적 고찰

  • Chan Kim (College of Korean Medicine, Daejeon University) ;
  • Sang Yun Han (College of Korean Medicine, Daejeon University)
  • 김찬 (대전대학교 한의과대학) ;
  • 한상윤 (대전대학교 한의과대학)
  • Received : 2024.08.20
  • Accepted : 2024.08.30
  • Published : 2024.08.31

Abstract

Objectives : Human body keeps balance through the interaction of various organs, especially the lungs and kidneys are closely connected in maintaining health and preventing disease. This study explores how the lungs and kidneys interact in terms of breathing and fluid balance and aims to find common ground between Eastern and Western medical practices. Methods : Similar explanations related to the interaction between the lungs and kidneys in the physiology and pathology of Traditional Korean Medicine(TKM) and biomedicine were compared. Results : In breathing, the lungs and kidneys work together by adjusting abdominal pressure with the diaphragm and maintaining acid-base balance, and hormones and enzymes secreted from the kidneys significantly affect lung function. This process corresponds to the concept of TKM that the kidneys control the reception of qi (腎主納氣). For fluid balance, the lungs help manage fluid levels through evaporation and sweating, interacting with the kidneys via the Renin-Angiotensin System (RAS), ACE, ACE2 enzymes, and antidiuretic hormone (ADH). This is similar to the theory in TKM that the lungs regulate human fluid (肺主通調水道). Conclusions : This research shows that by looking at the same physiological and pathological processes from different angles, we can reduce misunderstandings between Eastern and Western medicine. It helps improve the understanding of TKM's theories and supports building a unified framework for both medical traditions. Future work should focus on developing compatible theoretical systems across these fields.

Keywords

Acknowledgement

본 연구를 진행하는 데 협력해 준 대전대학교 한의과대학 이은비 학생에게 고마움을 전한다.

References

  1. Bartsch, R.P., et al., Network physiology: how organ systems dynamically interact. PloS one, 2015. 10(11): p. e0142143.
  2. Kim, S.K., et al., Is decreased lung function associated with chronic kidney disease? A retrospective cohort study in Korea. BMJ open, 2018. 8(4): p. e018928.
  3. Kim, Y.S., et al., Glomerular filtration rate affects interpretation of pulmonary function test in a Korean general population: results from the Korea National Health and Nutrition Examination Survey 2010 to 2012. The Korean Journal of Internal Medicine, 2016. 31(6): p. 1101.
  4. Poole, L.G., C.E. Dolin, and G.E. Arteel, Organ-organ crosstalk and alcoholic liver disease. Biomolecules, 2017. 7(3): p. 62.
  5. Castillo-Armengol, J., L. Fajas, and I.C. Lopez- Mejia, Inter-organ communication: a gatekeeper for metabolic health. EMBO reports, 2019. 20(9): p. e47903.
  6. medicine, P.C.o.P.o.k., Physiology of Korean Medicine. 2nd. 2008, seoul: Jipmoondang.
  7. Kim, M.H. and B.S. Kim, Study on the concept and its structure of visceral system in current traditional Korean medicine. Journal of Physiology & Pathology In Korean Medicine, 2017. 31(6): p. 305-312. https://doi.org/10.15188/kjopp.2017.12.31.6.305
  8. Rhu Do Gon, L.H.S., Kang Soon Su, Jeong Wu Yeal, A study of east west medicine renal function. Journal of Korean Medicine, 1987.
  9. JH, P. and H. YH, A Study on the relationship between Shin(腎) with Thyroid. JIKM, 1997. 18(2): p. 305-331.
  10. YS, L. and Y. CY, East-west medical study on the interrelationship between the heart and kidneys. KMC, 2005. 18(2): p. 20-44.
  11. JH, K., A Study on the Concept and Mechanism of "The Pi Controls the blood(脾統血)". KMC, 2016. 29(2): p. 165-176. https://doi.org/10.14369/SKMC.2016.29.2.165
  12. Park, M.S., et al., A Review on "Kidney" Functional System in Korean Medicine : From the Perspective of Molecular Physiology. JPPKM, 2022. 36(5): p. 169-174. https://doi.org/10.15188/kjopp.2022.10.36.5.169
  13. MY, S. and K. GH, A Holistic Study of the Physiology of the Kidney and its Symptom. The Journal of Dong Guk Oriental Medicine, 1999. 7(2): p. 1-8.
  14. Kocjan, J., et al., Network of breathing. Multifunctional role of the diaphragm: a review. Advances in respiratory medicine, 2017. 85(4): p. 224-232. https://doi.org/10.5603/ARM.2017.0037
  15. Ricoy, J., et al., Diaphragmatic dysfunction. Pulmonology, 2019. 25(4): p. 223-235. https://doi.org/10.1016/j.pulmoe.2018.10.008
  16. Suh, G.-Y., et al., Three-dimensional modeling analysis of visceral arteries and kidneys during respiration. Annals of vascular surgery, 2016. 34: p. 250-260. https://doi.org/10.1016/j.avsg.2016.04.004
  17. Morbiducci, U., et al., Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thrombosis and haemostasis, 2016. 115(03): p. 484-492. https://doi.org/10.1160/th15-07-0597
  18. Hodges, P.W. and S.C. Gandevia, Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. Journal of applied Physiology, 2000.
  19. Armaly, Z. and Z. Abassi, Deleterious Effects of Increased Intra-Abdominal Pressure on Kidney Function. Advances in Nephrology, 2014. 2014(1): p. 731657.
  20. de Souza Rezende, P., et al., Pulmonary function, muscle strength, and quality of life have differed between chronic kidney disease patients and healthy individuals. Therapeutic Apheresis and Dialysis, 2022. 26(2): p. 337-344. https://doi.org/10.1111/1744-9987.13714
  21. Katayifci, N., et al., Effects of different inspiratory muscle training protocols on functional exercise capacity and respiratory and peripheral muscle strength in patients with chronic kidney disease: a randomized study. BMC nephrology, 2024. 25(1): p. 184.
  22. Hamm, L.L., N. Nakhoul, and K.S. Hering-Smith, Acid-base homeostasis. Clinical journal of the American Society of Nephrology, 2015. 10(12): p. 2232-2242. https://doi.org/10.2215/CJN.07400715
  23. JS, H., Metabolic Disorders of Acid Base Balance. ACC, 2002. 17(2): p. 75-86.
  24. Sorino, C., et al., When kidneys and lungs suffer together. Journal of nephrology, 2019. 32: p. 699-707. https://doi.org/10.1007/s40620-018-00563-1
  25. HW, G., Bidirectional Crosstalk between Kidney and Lung. Korean J Med, 2016. 90(5): p. 389-393. https://doi.org/10.3904/kjm.2016.90.5.389
  26. Basu, R.K. and D.S. Wheeler, Kidney-lung cross-talk and acute kidney injury. Pediatr Nephrol, 2013. 28(12): p. 2239-48. https://doi.org/10.1007/s00467-012-2386-3
  27. DY, J., et al., A Literature Review on Asthma Caused by Kidney Deficiency. Journal of Korean Medicine, 1994. 15(1).
  28. DH, Y., J. DH, and D. HK, A Literature Review on "Kidney Governing Reception of Qi". Journal of Korean Medicine. 13(1).
  29. Jelkmann, W., Physiology and pharmacology of erythropoietin. Transfusion Medicine and Hemotherapy, 2013. 40(5): p. 302-309. https://doi.org/10.1159/000356193
  30. Donnelly, S., Why is erythropoietin made in the kidney? The kidney functions as a critmeter. American journal of kidney diseases, 2001. 38(2): p. 415-425. https://doi.org/10.1053/ajkd.2001.26111
  31. Shih, H.-M., C.-J. Wu, and S.-L. Lin, Physiology and pathophysiology of renal erythropoietin-producing cells. Journal of the Formosan Medical Association, 2018. 117(11): p. 955-963. https://doi.org/10.1016/j.jfma.2018.03.017
  32. Ferrucci, L. and L. Balducci. Anemia of aging: the role of chronic inflammation and cancer. in Seminars in hematology. 2008. Elsevier.
  33. Ghezzi, P. and M. Brines, Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell death & differentiation, 2004. 11(1): p. S37-S44. https://doi.org/10.1038/sj.cdd.4401450
  34. MacRedmond, R., G.K. Singhera, and D.R. Dorscheid, Erythropoietin inhibits respiratory epithelial cell apoptosis in a model of acute lung injury. Eur Respir J, 2009. 33(6): p. 1403-14. https://doi.org/10.1183/09031936.00084608
  35. Ardalan, M.R., et al., Erythropoietin ameliorates oxidative stress and tissue injury following renal ischemia/reperfusion in rat kidney and lung. Med Princ Pract, 2013. 22(1): p. 70-4. https://doi.org/10.1159/000340060
  36. Haine, L., et al., Cytoprotective effects of erythropoietin: What about the lung? Biomed Pharmacother, 2021. 139: p. 111547.
  37. Boomsma, F. and K. Tipton, Renalase, a catecholamine-metabolising enzyme? Journal of neural transmission, 2007. 114: p. 775-776. https://doi.org/10.1007/s00702-007-0672-1
  38. Bisogni, V., et al., The sympathetic nervous system and catecholamines metabolism in obstructive sleep apnoea. Journal of thoracic disease, 2016. 8(2): p. 243.
  39. Hall, J.E., Guyton and Hall Textbook of Medical Physiology, Jordanian Edition E-Book. 2016: Elsevier Health Sciences.
  40. Kaur, J., B.E. Young, and P.J. Fadel, Sympathetic overactivity in chronic kidney disease: consequences and mechanisms. International journal of molecular sciences, 2017. 18(8): p. 1682.
  41. Li, G., et al., Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation, 2008. 117(10): p. 1277-1282. https://doi.org/10.1161/CIRCULATIONAHA.107.732032
  42. SJ, L., K. KS, and K. BS, The Oriental and Western Medical Study on the Viewpoint in Human System. Research Institute of Korean Medicine, Daejeon University, 2010. 19(1): p. 99-109.
  43. Kim, J., et al., Comparative Study of Normal Group and Depression Group(pulmonary Function is Below Expected Value) by DSOM. Journal of Physiology & Pathology in Korean Medicine, 2009.
  44. HJ, B., et al., A Retrospective Study of Chronic Pulmonary Disease Patients Treated with Chungsangboha-tang : IgE, eosinophil, PFT. JIKM, 2016. 37(3).
  45. CJ, K. and H. IS, Studies on the Activities of Peritoneal Macrophages Induced by Yookmijihwangtang, Palmijihwangtang and Gamijihwangtang. Research Institute of Korean Medicine, Daejeon University, 1997. 6(1): p. 331-347.
  46. LEE, J., et al., Analysis of Studies on Yukmijihwang-tang for Establishment of Evidence Based Medicine. JPPKM, 2009. 23(1): p. 15-26.
  47. Bae, G. and J. Park, Effects of Yukmijihwang-tang on Maximal Exercise Performance. JPPKM, 2015. 29(6): p. 498-502. https://doi.org/10.15188/kjopp.2015.12.29.6.498
  48. Satta, E., et al., Kidney and lung in pathology: mechanisms and clinical implications. Multidisciplinary Respiratory Medicine, 2022. 17(1).
  49. Faubel, S. and C.L. Edelstein, Mechanisms and mediators of lung injury after acute kidney injury. Nature Reviews Nephrology, 2016. 12(1): p. 48-60. https://doi.org/10.1038/nrneph.2015.158
  50. Kirkham, P.A. and P.J. Barnes, Oxidative stress in COPD. Chest, 2013. 144(1): p. 266-273. https://doi.org/10.1378/chest.12-2664
  51. Polverino, F., B.R. Celli, and C.A. Owen, COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs?(2017 Grover Conference Series). Pulmonary Circulation, 2018. 8(1): p. 2045894018758528.
  52. Cai, H. and D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation research, 2000. 87(10): p. 840-844. https://doi.org/10.1161/01.RES.87.10.840
  53. Nemmar, A., et al., Lung oxidative stress, DNA damage, apoptosis, and fibrosis in adenine-induced chronic kidney disease in mice. Frontiers in physiology, 2017. 8: p. 896.
  54. Ho, H.-J. and H. Shirakawa, Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells, 2022. 12(1): p. 88.
  55. Bezerra, F.S., et al., Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants, 2023. 12(3): p. 548.
  56. Mediclass. Daejeon: Korea Institute of Oriental Medicine. [cited 2024 july]; Available from: https://www.mediclassics.kr/.
  57. Jequier, E. and F. Constant, Water as an essential nutrient: the physiological basis of hydration. Eur J Clin Nutr, 2010. 64(2): p. 115-23. https://doi.org/10.1038/ejcn.2009.111
  58. Sawka, M.N., S.N. Cheuvront, and R. Carter, Human water needs. Nutrition reviews, 2005. 63(suppl_1): p. S30-S39. https://doi.org/10.1111/j.1753-4887.2005.tb00152.x
  59. Haut, B., et al., Comprehensive Analysis of Heat and Water Exchanges in the Human Lungs. Front Physiol, 2021. 12: p. 649497.
  60. Leung, H.Y.C., et al., Inter-organ relationships among gut, lung and skin beyond the pathogenesis of allergies: relevance to the Zang-Fu theory in Chinese medicine. Chinese Medicine, 2017. 8(03): p. 73.
  61. Molkov, Y.I., et al., Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. Progress in brain research, 2014. 212: p. 1-23. https://doi.org/10.1016/B978-0-444-63488-7.00001-X
  62. Estanol, B., et al., Sympathetic co-activation of skin blood vessels and sweat glands. Clinical Autonomic Research, 2004. 14: p. 107-112.
  63. Baker, L.B., Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature, 2019. 6(3): p. 211-259. https://doi.org/10.1080/23328940.2019.1632145
  64. Kuypers, D.R., Skin problems in chronic kidney disease. Nature Reviews Nephrology, 2009. 5(3): p. 157-170. https://doi.org/10.1038/ncpneph1040
  65. Benigni, A., P. Cassis, and G. Remuzzi, Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO molecular medicine, 2010. 2(7): p. 247-257.
  66. Gintoni, I., M. Adamopoulou, and C. Yapijakis, The impact of ACE and ACE2 gene polymorphisms in pulmonary diseases including COVID-19. in vivo, 2022. 36(1): p. 13-29. https://doi.org/10.21873/invivo.12672
  67. Zhong, J., et al., Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation, 2010. 122(7): p. 717-728. https://doi.org/10.1161/CIRCULATIONAHA.110.955369
  68. Bourgonje, A.R., et al., Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). The Journal of pathology, 2020. 251(3): p. 228-248. https://doi.org/10.1002/path.5471
  69. Mizuiri, S. and Y. Ohashi, ACE and ACE2 in kidney disease. World journal of nephrology, 2015. 4(1): p. 74.
  70. Yilin, Z., N. Yandong, and J. Faguang, Role of angiotensin-converting enzyme (ACE) and ACE2 in a rat model of smoke inhalation induced acute respiratory distress syndrome. Burns, 2015. 41(7): p. 1468-1477. https://doi.org/10.1016/j.burns.2015.04.010
  71. Doerschug, K.C., et al., Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Critical Care, 2010. 14: p. 1-9. https://doi.org/10.1186/cc8887
  72. Proczka, M., et al., Vasopressin and Breathing: Review of Evidence for Respiratory Effects of the Antidiuretic Hormone. Front Physiol, 2021. 12: p. 744177.
  73. Szczepanska-Sadowska, E., et al., Vasopressin and related peptides; potential value in diagnosis, prognosis and treatment of clinical disorders. Current drug metabolism, 2017. 18(4): p. 306-345. https://doi.org/10.2174/1389200218666170119145900
  74. Nickel, N.P., et al., Circulating levels of copeptin predict outcome in patients with pulmonary arterial hypertension. Respiratory Research, 2013. 14: p. 1-9. https://doi.org/10.1186/1465-9921-14-1
  75. Lee, S.A., et al., Distant organ dysfunction in acute kidney injury: a review. American journal of kidney diseases, 2018. 72(6): p. 846-856. https://doi.org/10.1053/j.ajkd.2018.03.028
  76. Visconti, L., et al., Kidney-lung connections in acute and chronic diseases: current perspectives. Journal of nephrology, 2016. 29: p. 341-348. https://doi.org/10.1007/s40620-016-0276-7