References
- Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332. https://doi.org/10.1007/BF02294359
- Berlin, K. S., Williams, N. A., & Parra, G. R. (2014). An introduction to latent variable mixture modeling (part 1): Overview and cross-sectional latent class and latent profile analyses. Journal of Pediatric Psychology, 39(2), 174-187. https://doi.org/10.1093/jpepsy/jst084
- Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246-263. https://doi.org/10.1111/j.1467-8624.2007.00995.x
- Boaler, J. (2019). Limitless mind: Learn, lead, and live without barriers. HarperCollins.
- Boaler, J. (2022). Mathematical mindsets: Unleashing students' potential through creative mathematics, inspiring messages and innovative teaching. John Wiley & Sons.
- Bostwick, K. C., Collie, R. J., Martin, A. J., & Durksen, T. L. (2020). Teacher, classroom, and student growth orientation in mathematics: A multilevel examination of growth goals, growth mindset, engagement, and achievement. Teaching and Teacher Education, 94, 103100. https://doi.org/10.1016/j.tate.2020.103100
- Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195-212. https://doi.org/10.1007/BF01246098
- Chestnut, E. K., Lei, R. F., Leslie, S. J., & Cimpian, A. (2018). The myth that only brilliant people are good at math and its implications for diversity. Education Sciences, 8(2), 65. https://doi.org/10.3390/educsci8020065
- Clark, S. L. (2010). Mixture* modeling with behavioral data [Doctoral dissertation, University of California, Los Angeles].
- Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), 7. https://doi.org/10.7275/jyj1-4868
- Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Psychology Press.
- Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.
- Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological Review, 95(2), 256-273. https://doi.org/10.1037/0033-295X.95.2.256
- Fabrigar, L. R., & Wegener, D. T. (2011). Exploratory factor analysis. Oxford University Press.
- Field, A. (2013). Discovering statistics using IBM SPSS statistics. Sage.
- Gutshall, C. A. (2013). Teachers' mindsets for students with and without disabilities. Psychology in the Schools, 50(10), 1073-1083. https://doi.org/10.1002/pits.21725
- Heo, H. J., & Kim, S. M. (2022). A study on the beliefs of primary and secondary pre-teachers with a focus on math mindset. Journal of Learner-Centered Curriculum and Instruction, 22(15), 765-779. https://doi.org/10.22251/jlc-ci.2022.22.15.765
- Hwang, J. H., Tak, B. J., Lee, S. E., Kim, H. M., & Lee, H. Y. (2022). Realationships among students' attitude toward mathematics, mindset, and teachers' mindset. School Mathematics, 24(4), 525-549. https://doi.org/10.57090/sm.2022.12.24.4.525
- Infurna, F. J., & Grimm, K. J. (2018). The use of growth mixture modeling for studying resilience to major life stressors in adulthood and old age: Lessons for class size and identification and model selection. The Journals of Gerontology: Series B, 73(1), 148-159. https://doi.org/10.1093/geronb/gbx019
- Jonsson, A. C., Beach, D., Korp, H., & Erlandson, P. (2012). Teachers' implicit theories of intelligence: Influences from different disciplines and scientific theories. European Journal of Teacher Education, 35(4), 387-400. https://doi.org/10.1080/02619768.2012.662636
- Kim, S. M., & Heo, H. J. (2023). A study on the mathematical beliefs of elementary school teachers with a focus on mathematical mindset. School Mathematics, 25(1), 31-58. https://doi.org/10.57090/sm.2023.03.25.1.31
- Kline, R. B. (2011). Convergence of structural equation modeling and multilevel modeling. In M. Williams, & W. P. Vogt (Eds), The Sage handbook of innovation in social research methods (pp. 562-589). SAGE Publications. https://doi.org/10.4135/9781446268261
- Laine, S., & Tirri, K. (2023). Literature review on teachers' mindsets, growth-oriented practices and why they matter. Frontiers in Education, 8, 1275126. https://doi.org/10.3389/feduc.2023.1275126
- Lee, H. Y., Kim, H. M., Ko, H. K., Park, J. H., Oh, S. J., Lim, M. Y., Tak, B. J., & Hwang, J. H. (2021). A study on ways to improve students' mathematical affective achievement. KOFAC A22040003.
- Lee, S. L., Chan, H. S., Tong, Y. Y., & Chiu, C. Y. (2023). Growth mindset predicts teachers' life satisfaction when they are challenged to innovate their teaching. Journal of Pacific Rim Psychology, 17, 1-11. https://doi.org/10.1177/18344909231167533
- Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767-778. https://doi.org/10.1093/biomet/88.3.767
- Makkonen, T., Lavonen, J., & Tirri, K. (2019). General and physics-specific mindsets about intelligence and giftedness: A study of gifted Finnish upper-secondary-school students and physics teachers. International Journal for Talent Development and Creativity, 7(1), 39-52.
- McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3), 318-324. https://doi.org/10.2307/2347790
- Muthen, L., & Muthen, B. (1998). MPlus (version 8.10) [Computer software]. Muthen & Muthen.
- Park, D., Gunderson, E. A., Tsukayama, E., Levine, S. C., & Beilock, S. L. (2016). Young children's motivational frameworks and math achievement: Relation to teacher-reported instructional practices, but not teacher theory of intelligence. Journal of Educational Psychology, 108(3), 300-313. https://doi.org/10.1037/edu0000064
- Patterson, M. M., Kravchenko, N., Chen-Bouck, L., & Kelley, J. A. (2016). General and domain-specific beliefs about intelligence, ability, and effort among preservice and practicing teachers. Teaching and Teacher Education, 59, 180-190. https://doi.org/10.1016/j.tate.2016.06.004
- Rattan, A., Good, C., & Dweck, C. S. (2012). "It's ok-Not everyone can be good at math": Instructors with an entity theory comfort (and demotivate) students. Journal of Experimental Social Psychology, 48(3), 731-737. https://doi.org/10.1016/j.jesp.2011.12.012
- Rissanen, I., Kuusisto, E., Hanhimaki, E., & Tirri, K. (2018). Teachers' implicit meaning systems and their implications for pedagogical thinking and practice: A case study from Finland. Scandinavian Journal of Educational Research, 62(4), 487-500. https://doi.org/10.1080/00313831.2016.1258667
- Ronkainen, R., Kuusisto, E., & Tirri, K. (2019). Growth mindset in teaching: A case study of a Finnish elementary school teacher. International Journal of Learning, Teaching and Educational Research, 18(8), 141-154. https://doi.org/10.26803/ijlter.18.8.9
- Scherer, R., Campos, D. G. (2022). Measuring those who have their minds set: An item-level meta-analysis of the implicit theories of intelligence scale in education. Educational Research Review, 37, 100479. https://doi.org/10.1016/j.edurev.2022.100479
- Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.
- Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333-343. https://doi.org/10.1007/BF02294360
- Sun, K. L. (2018). Brief report: The role of mathematics teaching in fostering student growth mindset. Journal for Research in Mathematics Education, 49(3), 330-335. https://doi.org/10.5951/jresematheduc.49.3.0330
- Wang, Q., & Ng, F. F. Y. (2012). Chinese students' implicit theories of intelligence and school performance: Implications for their approach to schoolwork. Personality and Individual Differences, 52(8), 930-935. https://doi.org/10.1016/j.paid.2012.01.024
- Willingham, J. C. (2016). The role of mindset in a mathematics teacher's interpretations and enactments of professional development activities (Publication No. 10146909) [Doctoral dissertation, Middle Tennessee State University]. ProQuest Dissertations Publishing.
- Willingham, J. C., Barlow, A. T., Stephens, D. C., Lischka, A. E., & Hartland, K. S. (2021). Mindset regarding mathematical ability in K-12 teachers. School Science and Mathematics, 121(4), 234-246. https://doi.org/10.1111/ssm.12466
- Yeager, D. S., Carroll, J. M., Buontempo, J., Cimpian, A., Woody, S., Crosnoe, R., Muller, C., Murray, J., Mhatre, P., Kersting, N., Hulleman, C., Kudym, M., Murphy, M., Duckworth, A. L., Walton, G. M., & Dweck, C. S. (2022). Teacher mindsets help explain where a growth-mindset intervention does and doesn't work. Psychological Science, 33(1), 18-32. https://doi.org/10.1177/09567976211028984
- Zhang, J., Kuusisto, E., & Tirri, K. (2020). Same mindset, different pedagogical strategies: A case study comparing Chinese and Finnish teachers. International Journal of Learning, Teaching and Educational Research, 19(2), 248-262. https://doi.org/10.26803/ijlter.19.2.15