DOI QR코드

DOI QR Code

The effect of precursor solution pH on the energy storage performance of 𝛼-MnO2 cathode for zinc-ion batteries synthesized via hydrothermal method

Zn 이온 배터리용 양극 𝛼-MnO2의 수열 합성 시 전구체 용액의 pH가 에너지 저장 성능에 미치는 영향

  • Sang-Eun Chun (School of Materials Science and Engineering, Kyungpook National University)
  • 전상은 (경북대학교 첨단소재공학부)
  • Received : 2024.08.12
  • Accepted : 2024.08.23
  • Published : 2024.08.31

Abstract

𝛼-MnO2 as a cathode material for Zn-ion batteries allows insertion and extraction of Zn ions within its tunnel structure during charge and discharge. The morphology and crystal structure of 𝛼-MnO2 particles critically determine their electrochemical behavior and energy storage performance. In this study, 𝛼-MnO2 was synthesized from precursor solutions under varying pH conditions using a hydrothermal method. The effects of pH values on the morphology, crystal structure, and electrochemical performance were systematically analyzed. The analysis revealed that materials synthesized at higher pH levels exhibited elongated and narrow nanorods with a lower specific surface area. In contrast, those formed at lower pH levels showed shorter, thicker nanorods with a higher specific surface area. This increased surface area at a lower pH enhanced the specific capacitance by providing a greater electrode/electrolyte interfacial area. By contrast, the material synthesized at higher pH conditions demonstrated superior rate capability, attributed to its crystal structure with wider lattice spacings. Wide lattice parameters in the material synthesized at higher pH conditions facilitated easier ion transport than at lower pH levels. Consequently, the study confirms that adjusting the pH of the precursor solution can optimize the electrochemical properties of 𝛼-MnO2 for Zn-ion batteries.

Keywords

Acknowledgement

이 성과는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C1009922).

References

  1. X. Huang, D. Lv, H. Yue, A. Attia, Y. Yang, Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization, Nanotechnology, 19 (2008) 225606. 
  2. S.E. Chun, S.I. Pyun, G.J. Lee, A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1M Na2SO4 solution, Electrochimica Acta, 51 (2006) 6479-6486. 
  3. L.I. Hill, A. Verbaere, D. Guyomard, MnO2 (α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology, and lithium insertion behavior, Journal of Power Sources, 119-121 (2003) 226-231. 
  4. P. Strobel, F. Thiery, C. Darie, O. Proux, A. Ibarra-Palos, M. Bacia, J.B. Soupart, Structural and electrochemical properties of new nanospherical manganese oxides for lithium batteries, Journal of Materials Chemistry, 15 (2005) 4799-4808. 
  5. J.Y. Luo, J.J. Zhang, Y.Y. Xia, Highly electrochemical reaction of lithium in the ordered mesoporous β-MnO2, Chemistry of Materials, 18 (2006) 5618-5623. 
  6. Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase, Chemistry of Materials, 7 (1995) 148-153. 
  7. L. Espinal, S.L. Suib, J.F. Rusling, Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2, Journal of the American Chemical Society, 126 (2004) 7676-7682. 
  8. J.Y. Park, Y.M. Choi, S.E. Chun, Alleviating Mn3+ dissolution in ZnMn2O4 cathode for the extended cyclability via particle size increase, Korean Journal of Metals and Materials, 61 (2023) 923-932. 
  9. S. Han, S. Park, S.H. Yi, W.B. Im, S.E. Chun, Effect of potential and current on electrodeposited MnO2 as a pseudocapacitor electrode: Surface morphology/chemistry and stability, Journal of Alloys and Compounds, 831 (2020) 154838. 
  10. L. Wang, X. Cao, L. Xu, J. Chen, J. Zheng, Transformed akhtenskite MnO2 from Mn3O4 as cathode for a rechargeable aqueous zinc ion battery, ACS Sustainable Chemistry & Engineering, 6 (2018) 16055-16063. 
  11. M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen, L. Yang, Y. Cui, W. Huang, W. Zhao, A. Song, Y. Wang, S. Ding, Y. Song, G. Qian, H. Chen, F. Pan, Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery, Nano Energy, 64 (2019) 103942. 
  12. S. Birgisson, D. Saha, B.B. Iversen, Formation mechanisms of nanocrystalline MnO2 polymorphs under hydrothermal conditions, Crystal Growth & Design, 18 (2018) 827-838. 
  13. X.F. Shen, Y.S. Ding, J. Liu, J. Cai, K. Laubernds, R.P. Zerger, A. Vasiliev, M. Aindow, S.L. Suib, Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials, Advanced Materials, 17 (2005) 805-809. 
  14. H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nature Energy, 1 (2016) 16039. 
  15. N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nature Communications, 8 (2017) 405. 
  16. M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries, Advanced Functional Materials, 28 (2018) 1802564. 
  17. C. Wei, C. Xu, B. Li, H. Du, F. Kang, Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage, Journal of Physics and Chemistry of Solids, 73 (2012) 1487-1491. 
  18. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, (2001). 
  19. U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation', Nature Nanotechnology, 6 (2011) 534-534. 
  20. S. Cui, D. Zhang, G. Zhang, Y. Gan, Reaction mechanism for the α-MnO2 cathode in aqueous Zn ion batteries revisited: elucidating the irreversible transformation of α-MnO2 into Zn-vernadite, Journal of Materials Chemistry A, 10 (2022) 25620-25632. 
  21. A. Bhadra, S. Swathilakshmi, U. Mittal, N. Sharma, G. Sai Gautam, D. Kundu, Averting H+-mediated charge storage chemistry stabilizes the high output voltage of LiMn2O4-based aqueous battery, Small Methods, n/a (2024) 2400070. 
  22. H. Kim, J.C. Kim, S.H. Bo, T. Shi, D.H. Kwon, G. Ceder, K-Ion batteries based on a P2-type K0.6CoO2 cathode, Advanced Energy Materials, 7 (2017) 1700098. 
  23. M.G. Verde, H. Liu, K.J. Carroll, L. Baggetto, G. M. Veith, Y. S. Meng, Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2, ACS Applied Materials & Interfaces, 6 (2014) 18868-18877. 
  24. C. Xu, J. Li, X. Feng, J. Zhao, C. Tang, B. Ji, J. Hu, C. Cao, Y. Zhu, F.K. Butt, The improved performance of spinel LiMn2O4 cathode with micro-nanostructured sphere-interconnected-tube morphology and surface orientation at extreme conditions for lithium-ion batteries, Electrochimica Acta, 358 (2020) 136901. 
  25. H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: The critical effects of surface orientations and particle size, ACS Applied Materials & Interfaces, 8 (2016) 4661-4675. 
  26. G.Z. Wei, X. Lu, F.S. Ke, L. Huang, J.T. Li, Z.X. Wang, Z.Y. Zhou, S.G. Sun, Crystal habit-tuned nanoplate material of Li[Li1/3-2/3NixMn2/3/3]O2 for high-rate performance lithium-ion batteries, Advanced Materials, 22 (2010) 4364-4367. 
  27. J. Newman, W. Tiedemann, Porous-electrode theory with battery applications, AIChE Journal, 21 (1975) 25-41. 
  28. A. Vu, Y. Qian, A. Stein, Porous electrode materials for lithium-ion batteries - How to prepare them and what makes them special, Advanced Energy Materials, 2 (2012) 1056-1085. 
  29. Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries, Advanced Energy Materials, 12 (2022) 2201506. 
  30. L. Wang, K. Asheim, P.E. Vullum, A.M. Svensson, F. Vullum-Bruer, Sponge-like porous manganese(II,III) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries, Chemistry of Materials, 28 (2016) 6459-6470. 
  31. D. Lu, Z.J. Yao, Y.Q. Li, Y. Zhong, X.L. Wang, D. Xie, X.H. Xia, C.D. Gu, J.P. Tu, Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries, Journal of Colloid and Interface Science, 565 (2020) 218-226. 
  32. C. Zhu, G. Saito, T. Akiyama, A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries, Journal of Materials Chemistry A, 1 (2013) 7077-7082. 
  33. J. Song, J. Kim, T. Kang, D. Kim, Design of a porous cathode for ultrahigh performance of a Li-ion battery: An overlooked pore distribution, Scientific Reports, 7 (2017) 42521. 
  34. F. Zhan, B. Geng, Y. Guo, Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries, Chemistry - A European Journal, 15 (2009) 6169-6174. 
  35. Z. Li, J. Liu, Y. Qin, T. Gao, Enhancing the charging performance of lithium-ion batteries by reducing SEI and charge transfer resistances, ACS Applied Materials & Interfaces, 14 (2022) 33004-33012. 
  36. T.R. Jow, S.A. Delp, J.L. Allen, J.P. Jones, M.C. Smart, Factors limiting Li+ charge transfer kinetics in Li-ion batteries, Journal of the Electrochemical Society, 165 (2018) A361. 
  37. M.S. Wu, P.C.J. Chiang, J.C. Lin, Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements, Journal of the Electrochemical Society, 152 (2005) A47. 
  38. J. Nishitani, K. M. Yu, W. Walukiewicz, Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces, Applied Physics Letters, 105 (2014) 132103. 
  39. J. Wang, Y. Zhou, Z. Shao, Porous TiO2 (B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries, Electrochimica Acta, 97 (2013) 386-392.
  40. J. Zheng, R. Dong, P. Liu, X. Peng, W. Tian, X. Lv, S. Tan, J. Ji, Interfacial engineered Fe2O3@FeP nanorod arrays as capacitive storage dominated and high charge transfer anode for high-rate lithium-ion batteries, Surface and Coatings Technology, 421 (2021) 127471. 
  41. S. Sarkar, H. Banda, S. Mitra, High capacity lithium-ion battery cathode using LiV3O8 nanorods, Electrochimica Acta, 99 (2013) 242-252. 
  42. Y. Liu, X. Chi, Q. Han, Y. Du, J. Huang, Y. Liu, J. Yang, α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries, Journal of Power Sources, 443 (2019) 227244. 
  43. B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery, Small, 14 (2018) 1703850. 
  44. M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode, Journal of Power Sources, 288 (2015) 320-327. 
  45. X. Pu, X. Li, Y. Xi, J. Zhang, J. Wang, W. Li, Tuning crystal water of α-MnO2 with enhanced diffusion kinetics for zinc-ion batteries, Journal of Solid State Electrochemistry, (2023). 
  46. M. Singh, J. Kaiser, H. Hahn, Thick electrodes for high energy lithium ion batteries, Journal of the Electrochemical Society, 162 (2015) A1196.