DOI QR코드

DOI QR Code

Open Space Spacial Pattern Analysis from the Perspective of Urban Heat Mitigation

도시 열저감 관점에서의 오픈스페이스 토지이용 공간패턴분석

  • Sangjun Kang (Department of Urban Planning.Real Estate, Gangneung-Wonju National University)
  • 강상준 (국립 강릉원주대학교 도시계획.부동산학과)
  • Received : 2024.07.04
  • Accepted : 2024.08.12
  • Published : 2024.08.31

Abstract

The purpose is to explore the meaning of the open space land use space pattern from the perspective of urban heat reduction using the land-use scenario. The employed methods are as follows: (1) to calculate the cooling capacity Index for each of five land use scenarios, using the InVEST Urban Cooling Model, (2) to calculate open space entropy & morphological spatial pattern for each land use scenario, using the Guidos Spatial Pattern Toolbox, and (3) to perform a Spearman rank correlation analysis between the InVEST and Guidos results. It is found that the rank correlation is moderate between the cooling capacity Index and the open space area ratio (rho=0.50). However, other relations are low. It is observed that only the total amount of open space is likely to have a meaning from the perspective of urban heat reduction, and that other open space location spatial patterns may not have much meaning from the perspective of urban thermal environment management.

연구목적은 오픈스페이스 토지이용 공간패턴이 도시 열저감 관점에서 어떤 의미를 갖는지 토지이용 시나리오를 이용하여 가능성 수준에서 살펴보는 것이다. 연구방법은 다음과 같다: (1) InVEST Urban Cooling Model을 이용, 5개 토지이용 시나리오별 Cooling Capacity Index 산출, (2) Guidos Spatial Pattern Toolbox를 사용, 토지이용 시나리오별 각각의 오픈스페이스 Entropy와 형태학적 공간패턴 산출, (3) InVEST 결과값과 Guidos 결과값들의 Spearman rank correlation analysis. 연구결과는 다음과 같다. Cooling Capacity Index와 오픈스페이스 면적비 순위 상관성은 보통이며(rho=0.50), 그 외 지표들은 낮은 것으로 나타났다. 이는 도시 열저감 관점에서는 오픈스페이스 총량만이 큰 의미를 가질 가능성이 있으며, 그 외 오픈스페이스 입지 공간패턴은 도시 열환경 관리 관점에서 큰 의미는 없을 수 있다는 가능성이 관찰되었다.

Keywords

Acknowledgement

본 논문은 2020년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2020S1A3A2A01095064).

References

  1. Antrop M. 2004. Landscape change and the urbanization process in Europe. Landscape and Urban Planning 67(1-4): 9-26. https://doi.org/10.1016/S0169-2046(03)00026-4
  2. Bartesaghi C, Osmond P, Peters A. 2018. Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Solar Energy 166: 486-508. https://doi.org/10.1016/j.solener.2018.03.008
  3. Carsjens G, van der Knaap W. 2002. Strategic landuse allocation: dealing with spatial relationships and fragmentation of agriculture. Landscape and Urban Planning 58(2-4): 171-179. https://doi.org/10.1016/S0169-2046(01)00219-5
  4. Chen L, Messing I, Zhang S, Fu B, Ledin S. 2003. Land use evaluation and scenario analysis towards sustainable planning on the Loess plateau in China - Case study in a small catchment. Catena 54(1-2): 303-316. https://doi.org/10.1016/S0341-8162(03)00071-7
  5. Cho H, Joung Y, Choi M. 2014. Effects of the urban spatial characteristics on urban heat island. Korea Environmental Policy And Administration. 22(2): 27-43. [Korean Literature] https://doi.org/10.15301/jepa.2014.22.4.27
  6. Das Chatterjee N, Chatterjee S, Khan A. 2016. Spatial modelling of urban sprawl around Greater Bhubaneswar city, India. Modelling Earth System Environmental Biology 2(14): 1-21.
  7. Huang H, Deng X, Yang H, S. L. 2020. Spatial evolution of the effects of urban heat island on residents' health. Technical Gazette 27(5): 427-1435.
  8. Jo Y. 2009. Empirical study on the relationship between compact city and transportation energy consumption: the case of 7 metropolitan cities. Korean Society and Public Administration. 19(4): 113-132. [Korean Literature]
  9. Kim H, Ahn K. 2011. The effects of compact city planning strategies on commuting distance of different income levels: Focused on Seoul, Korea. Urban Design. 12(1): 55-70. [Korean Literature]
  10. Kang S. 2022a. Revisiting Suburban developments: urban evolution and its implication to planning. Journal of Environmental Impact Assessment 31(3): 161-172. [Korean Literature] https://doi.org/10.14249/EIA.2022.31.3.161
  11. Kang S. 2022b. Urban heat mitigation effect analysis based on the land use location distribution by using an ecosystem service valuation model. Journal of Environmental Impact Assessment 31(6): 369-377. [Korean Literature] https://doi.org/10.14249/EIA.2022.31.6.369
  12. Kang S. 2021. Relationship between the spatial allocation of developed area and the heat wave phenomenon: The case of five metropolitan cities, Journal of Environmental Impact Assessment 30(3): 175-185. [Korean Literature] https://doi.org/10.14249/EIA.2021.30.3.175
  13. Kang S. 2020. Exploratory analysis for the concentration of PM10 air particulates and the morphological pattern of greeinfra: the case of Gyeonggido. GRI Review 22(4): 25-40. [Korean Literature] https://doi.org/10.23286/GRI.2020.22.4.002
  14. Kunapo J, Fletcher T, Ladson A, Cunningham L, Burns M. 2018. A spatially explicit framework for climate adaptation. Urban Water Journal 15(2): 159-166. https://doi.org/10.1080/1573062X.2018.1424216
  15. Li Y, Feng Q, De-Xuan S, Z Ke-Jia. 2016. Research on urban heat-island effect. Procedia Engineering 169: 11-18. https://doi.org/10.1016/j.proeng.2016.10.002
  16. McDonald R, Kroeger T, Boucher T, Wang L, Salem R. 2016. Planting healthy air: A global analysis of the role of urban trees in addressing particulate matter pollution and extreme heat. CAB International, 128-139.
  17. Melaas E, Wang J, Mille D, Friedl M. 2016. Interactions between urban vegetation and surface urban heat islands: A case study in the Boston metropolitan region. Environmental Research Letters 11(5): 054020.
  18. Nam K, Kim H, Son M. 2008. A study on the correlation between compact of population and transport energy: An application of compact Index. Journal of Korea Planning Association 43(2): 155-168. [Korean Literature]
  19. Phelan P, Kaloush K., Miner M, Golden J, Phelan B, Iii H, Taylor R. 2015. Urban heat island: Mechanisms, implications, and possible remedies. Annual Review of Environment and Resources, 285-309.
  20. Rovai A, Jason D, Michael K. 2013. Social science research design and statistics: A practitioner's guide to research methods and IBM SPSS. Watertree Press.
  21. Sudhira H, Ramachandra T, Jagadish K. 2004. Urban sprawl: metrics and modeling using GIS. International Journal of Applied Earth Observation and Geoinformation 5(1): 29-39. https://doi.org/10.1016/j.jag.2003.08.002
  22. Yeh A, Li X. 1998. Sustainable land development model for rapid growth areas using GIS. International Journal of Geographical Information Science 12(2): 169-189. https://doi.org/10.1080/136588198241941
  23. Yin R, Xiang Q, Xu J, Deng X. 2010. Modeling the driving forces of the land use and land cover changes along the upper Yangtze river of China. Environmental Management 45: 454-465. https://doi.org/10.1007/s00267-009-9377-6
  24. Vogt P. 2010. User guide of GUIDOS, Institute for Environment and Sustainability European Commission. Joint Research Centre.
  25. Zardo L, Genelett D, Prez-soba M, Eupen M. 2017. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem Services 26: 225-235. https://doi.org/10.1016/j.ecoser.2017.06.016
  26. Zawadzka J, Harris J, Corstanje R. 2021. Assessment of heat mitigation capacity of urban green spaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landscape and Urban Planning 214: 104163.