DOI QR코드

DOI QR Code

BIM 기반의 단면이 손상된 말뚝의 수평 거동 해석 모형 개발과 적용

Development of BIM Based Analytical Model for Laterally Loaded Piles with Defects and Application

  • 정영욱 ((주)서영엔지니어링) ;
  • 안재윤 ((주)서영엔지니어링) ;
  • 김현승 ((주)서영엔지니어링) ;
  • 안재훈 (부산대학교 사회환경시스템공학과)
  • 투고 : 2024.08.13
  • 심사 : 2024.08.19
  • 발행 : 2024.08.31

초록

많은 시설물의 기초로 사용되고 있는 현장타설말뚝의 시공 건전성을 확인하기 위하여 비파괴 건전도 시험이 사용되고 있다. 그러나 비파괴 건전도 시험은 내부 결함의 유무로만 기초의 안전성을 파악하며 결함의 위치 및 규모는 고려하고 있지 않다. 따라서, 본 연구에서는 말뚝 기초 결함의 단면 특성을 추출하고 횡방향 지지력 및 단면력을 검토하는 BIM 연계 횡방향 지지력 해석 모델을 제안하고, 이를 이용하여 결함이 존재하는 현장타설말뚝 기초의 안전성을 평가하고자 한다. 해석 결과, 상부에 존재하는 결함이 말뚝머리 변위 변화에 많은 영향을 끼쳤으며 결함에 의한 발생 휨모멘트 변화보다는 단면 축소로 인한 PM 상관도의 크기 감소가 부재 파괴의 위험도를 더 증가시키는 것을 확인하였다. 이러한 제안 방법은 현장타설말뚝의 입체적인 안전성 평가에 도움이 될 것으로 판단된다.

Nondestructive pile integrity tests are used to confirm the construction of drilled shafts as the foundation of many facilities. However, the safety of the foundation is determined only by the presence or absence of defects, and the location and scale of defects are not considered. In this study, we propose an analysis model for the lateral bearing capacity and section force connected building information modeling (BIM) by extracting the cross-sectional characteristics of the defect in piles and reviewing the safety of piles with defects. Defects at the top of piles had more effect on the change in the deflection of the pile head. Moreover, the decrease in the axial force-bending moment interaction diagram due to cross-sectional reduction increased the risk of destruction of the piles more than the change in the bending moments due to defects. The proposed method can help review the comprehensive safety of piles.

키워드

과제정보

본 연구는 산업통상자원부와 한국산업기술진흥원의 "중견기업 DNA 융합산학협력프로젝트"(콘크리트 구조물 인공지능 기반 안전성 평가·관리 시스템 개발)(과제번호 P0024559)으로 수행된 연구결과입니다.

참고문헌

  1. Broms, B. (1964), "Lateral Resistance of Piles in Cohesionless Soil", Journal of the Soil Mechanics and Foundation Division, Vol.90, No.3, pp.123-156.
  2. Hariswaran, S. and Premalatha, K. (2021), "Experimental Investigation on the Behavior of a Defective Pile Subject to a Lateral Load", Soil Mechanical and Foundation Engineering, Vol.58, No.4, pp. 339-346.
  3. Hetenyi, M. (1946), Beams on Elastic Foundation: Theory with Application in the Fields of Civil and Mechanical Engineering, The University of Michigan Press.
  4. Jung, G.J., Cho, S.M., Kim, H.J., and Jung, J.H. (2005), "Verification of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft Using Full Scale Tests", Journal of the Korean Geotechnical Society, Vol.21, No.5, pp.207-214.
  5. Jung, S.J., Jung, G.J. Kwon, O.S., and Kim, M.M. (2004), "Effect of Defects on Axial Resistant Behavior of Drilled Sahft", 2004 Korean Society of Civil Engineers Conference, Korean Society of Civil Engineers, pp.2384-2389.
  6. Kim, D.H. (2007), A Study on 3D Visualization of CSL Data for the Pile Integrity Test, Dong-A University.
  7. Kim, G.I., Yoo, H., Cho, H.J., and Chung, K.Y. (2024), "Defect Detection Model Using Time Series Data Augmentation and Transformation", Computers, Materials & Continua, Vol.78, No.2, pp.1713-1730.
  8. Kim, K.T., Lee, G.H., and Choi, B.S. (2011), "A Study on the Application of Drilled Shaft in Weathered Rock", Geotechnical Engineering, Vol.27, No.3, pp.40-47.
  9. Kim, Y.H., Jeong, S.S., Kim, J.H., and Lee, Y.G. (2007), "Effects of Lateral Pile Rigidity of Offshore Drilled Shafts by Developing p-y Curves in Marine Clay", Journal of the Korean Geotechnical Society, Vol.23, No.6, pp.37-51.
  10. Korea Highway Corporation (2003), "Integrity Tests of the Castin-Palce Concrete Pile".
  11. Korea Highway Corporation (2017), "Improvement of Design Criteria for Single Drilled Shaft", Design Practice Book of Expressway 2016, pp.135-142.
  12. Korea Housing Corporation (1989), "The Feasibility of Bored and Cast-In-Situ Piles".
  13. Korean Geotechnical Society (2018), "Design Specification and Commentary for Foundation Design".
  14. Lee, J.H., Joo, S.I., Ryu, T.H., and Choi, J.H. (2006), "Design of Large-Diameter Drilled Shaft Bearing on Gravel Layer", Korean Association of Professional Engineers Soil Mechanics & Foundation Engineering 2006, pp.115-132.
  15. Lee, J.S., Song, J.W., and Yu, J.D. (2018), "Application of Electromagnetic Wave for Evaluating Necking Defects in Bored Piles", Journal of the Korean Geotechnical Society, Vol.34, No.4, pp.27-35.
  16. Likins, G. and Rausche, F. (2000), "Recent Advances and Proper use of PDI Low Strain Pile Integrity Testing", Memories Sixth International Conference on the Application of Stress-wave Theory to Piles, pp.211-218.
  17. Matlock, H. (1970), "Correlations for Design of Laterally Loaded Pile in Soft Clay", Proceedings of the 2nd Offshore Technology Conference, Houston, pp.577-594.
  18. O'Neill, M.W. (1991), "Construction Practices and Defects in Drilled Shaft", Transportation Research Record, 1331, pp.6-14.
  19. William, H. and Wang, S.T. (2013), "Technical Manual for LPile 2013", ENSOFT, INC.
  20. Wu, C.S., Zhang, J.Q., Qi, L.L., and Zhuo, D.B. (2022), "Defect Identification of Concrete Riles Based on Numerical Simulation and Convolutional Neural Network", Buildings, Vol.12, pp.664.
  21. Yu, J.D., Kim, S.Y., and Lee, J.S. (2020) "Variations in Velocity and Sensitivity of Electromagnetic Wave in Transmission Lines configured in Model Piles with Necking Defects Containing Soils", Sensors, Vol.20, No.22, pp.6541.