DOI QR코드

DOI QR Code

Effect of wood pellet fly ash on strength and microstructure of Korean weathered granite soil

  • Jebie A. Balagosa (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Min Jy Lee (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Yun Wook Choo (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Ha Seog Kim (Department of Architectural Engineering, Kongju National University) ;
  • Jin Man Kim (Department of Architectural Engineering, Kongju National University)
  • Received : 2023.12.25
  • Accepted : 2024.07.10
  • Published : 2024.08.25

Abstract

Low carbon energy demand in South Korea is increasing, hence leading to an increasing usage of wood pellets and the amount of its combustion by-product called wood pellet fly ash (WA). In an effort to develop recycling technology, this research investigates the use of WA as a new sustainable binder for backfill soil materials. The influence of WA on weathered granite soils (WS) is investigated by mixing 5%, 15%, and 25% of WA dosage, compacted at optimum moisture content, then cured for 3, 7, 14, and 28 days. After curing, the compacted specimens were investigated through unconfined compressive tests, pH tests, total suction tests, and microstructural analysis. The findings suggest that the higher the dosage rate, the higher strength and modulus. Additionally, the alkali ions of WA aid in the cementation of WS particles, and newly cementitious minerals are confirmed after 28 curing days. The refinement of pore microstructures led to a denser WS matrix and stiffness improvements. The results validate the binding potential of wood pellet fly ash on weathered granite soils in terms of strength, modulus, and microstructures.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government and Ministry of Science and ICT (MSIT) (No.2021R1A2C2009985).

References

  1. AASHTO Transportation Officials (1993), AASHTO Guide for Design of Pavement Structures, 1.
  2. Abbasi, T. and Abbasi, S.A. (2010), "Biomass energy and the environmental impacts associated with its production and utilization", Renew. Sust. Energ. Rev., 14(3), 919-937. https://doi.org/10.1016/j.rser.2009.11.006.
  3. Abdul-Hussain, N. and Fall, M. (2011), "Unsaturated hydraulic properties of cemented tailings backfill that contains sodium silicate", Eng. Geol., 123(4), 288-301. https://doi.org/10.1016/j.enggeo.2011.07.011.
  4. ACI Committee 229 (1994), Controlled Low Strength Materials (CLSM), ACI 229R-94: Concrete Int., 16(7), 55-64.
  5. Ale, T.O. (2023), "Improving the geotechnical properties of a Nigerian termite reworked soil using pretest drying conditions and sawdust ash", Int. J. Geo-Eng., 14(1), 1. https://doi.org/10.1186/s40703-022-00178-3.
  6. Alhassan, M. (2008), "Potentials of Rice Husk Ash for Soil Stabilization", Assumption University Journal of Technology, Bangkok, Thailand (AU), Bangkok, Thailand.
  7. Ali, F.H., Adnan, A. and Choy, C.K. (1992), "Use of rice husk ash to enhance lime treatment of soil", Can. Geotech. J., 29(5), 843-852. https://doi.org/10.1139/t92-091.
  8. Almajed, A., Dafalla, M. and Shaker, A.A. (2023)., "The combined effect of calcium chloride and cement on expansive soil materials", Appl. Sci., 13(8), 4811. https://doi.org/10.3390/app13084811.
  9. Anupam, A.K., Kumar, P. and Ransinchung, G.D. (2013), "Use of various agricultural and industrial waste materials in road construction", Procedia - Social and Behavioral Sciences, 104, 264-273. https://doi.org/10.1016/j.sbspro.2013.11.119.
  10. ASTM D1557 (2012), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000ft-lbf/ft3(2,700 kN-m/m3)), West Conshohocken, Pennsylvania, USA:
  11. ASTM D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, West Conshohocken, Pennsylvania, USA.
  12. ASTM D2487 (2020), Standard Practice for Classification of soils for Engineering Purposes (Unified Soil Classification System), West Conshohocken, Pennsylvania, USA.
  13. ASTM D5239 (2012), Standard Practice for Characterizing Fly Ash for Use in Soil Stabilization, West Conshohocken, Pennsylvania, USA.
  14. ASTM D6913 (2017), Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, West Conshohocken, Pennsylvania, USA.
  15. Ayininuola, G.M. and Oyedemi, O.P. (2013), "Impact of hardwood and softwood ashes on soil geotechnical properties", Trans. J. Sci. Tech. y, 3(10),
  16. Bagherinia, M. and Isik, N. (2022), "Investigation of physicochemical changes of soft clay around deep geopolymer columns", Environ. Eng. Geosci., 28(4), 371-386. https://doi.org/10.2113/EEG-D-21-00099.
  17. Bagherinia, M. and Zaimoglu, A.S. (2021), "Effect of deep chemical mixing columns on properties of surrounding soft clay", Proceedings of the Institution of Civil Engineers - Ground Improvement, 174(2), 95-104. https://doi.org/10.1680/jgrim.18.00108.
  18. Balagosa, J., Lee, M.J., Choo, Y.W., Kim, H.S. and Kim, J.M. (2023). "Experimental validation of the cementation mechanism of wood pellet fly ash blended binder in weathered granite soil", Materials, 16(19), 6543. https://doi.org/10.3390/ma16196543.
  19. Balagosa, J., Navea, I.J., Lee, M.J., Choo, Y.W., Kim, H.S. and Kim, J.M. (2024), "Dynamic property growth of weathered granite soils stabilized with wood pellet fly ash based binders", Soil Dyn. Earthq. Eng., 180, 108627, https://doi.org/10.1016/j.soildyn.2024.108627.
  20. Barbosa, F.L. and Cordeiro, G.C. (2021), "Partial cement replacement by different sugar cane bagasse ashes: Hydration-related properties, compressive strength and autogenous shrinkage", Constr. Build. Mater., 272, 121625. https://doi.org/10.1016/j.conbuildmat.2020.121625.
  21. Basha, E.A., Hashim, R., Mahmud, H.B. and Muntohar, A.S. (2005). "Stabilization of residual soil with rice husk ash and cement", Constr. Build. Mater., 19(6), 448-453, https://doi.org/10.1016/0.1016/j.conbuildmat.2004.08.001.
  22. Behnood, A. (2018), "Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques", Transport. Geotech., 17, 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002.
  23. Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M. and Techapaphawit, S. (2019), "Physical, chemical, and geotechnical properties of coal fly ash: A global review", Case Studies Constr. Mater., 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263.
  24. Bohrn, G. and Stampfer, K. (2014), "Untreated wood ash as a structural stabilizing material in forest roads", Croatian J. Forest Eng. : J. Theory Appl. Forestry Eng., 35(1), 81-89.
  25. Burke, B.C., Heimsath, A.M. and White, A.F. (2007), "Coupling chemical weathering with soil production across soil-mantled landscapes", Earth Surface Processes and Landforms, 32(6), 853-873. https://doi.org/10.1002/esp.1443.
  26. Butt, W.A., Gupta, K. and Jha, J.N. (2016), "Strength behavior of clayey soil stabilized with saw dust ash", Int. J. Geo-Eng., 7(1), 18. https://doi.org/10.1186/s40703-016-0032-9.
  27. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  28. Cherian, C. and Siddiqua, S. (2021), "Engineering and environmental evaluation for utilization of recycled pulp mill fly ash as binder in sustainable road construction", J. Cleaner Product., 298, 126758. https://doi.org/10.1016/10.1016/j.jclepro.2021.126758.
  29. Choobbasti, A.J. and Kutanaei, S.S. (2017), "Microstructure characteristics of cement-stabilized sandy soil using nanosilica", J. Rock Mech. Geotech. Eng., 9(5), 981-988. https://doi.org/10.1016/j.jrmge.2017.03.015.
  30. Cohen, J. (1988), Statistical Power Analysis for the Behavioral Sciences, 2nd Ed., Routledge, New York.
  31. Das, G., Razakamanantsoa, A., Herrier, G. and Deneele, D. (2022), "Influence of wetting fluids on the compressive strength, physicochemical, and pore-structure evolution in lime-treated silty soil subjected to wetting and drying cycles", Transport. Geotech., 35, 100798. https://doi.org/10.1016/j.trgeo.2022.100798.
  32. Davidson, D.T. (1961), "Soil stabilization with lime fly ash", LIX. Iowa State University of Science and Technology & Highway Research Board.
  33. Dayioglu, M., Cetin, B. and Nam, S. (2017), "Stabilization of expansive Belle Fourche shale clay with different chemical additives", Appl. Clay Sci., 146, 56-69. https://doi.org/10.1016/j.clay.2017.05.033.
  34. Edil, T.B., Acosta, H.A. and Benson, C.H. (2006), "Stabilizing soft fine-grained soils with fly ash", J. Mater. Civil Eng., 18(2), 283-294. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(283).
  35. Etiegni, L. and Campbell, A.G. (1991), "Physical and chemical characteristics of wood ash", Bioresource Technol., 37(2), 173-178. https://doi.org/10.1016/0960-8524(91)90207-Z.
  36. Farnsworth, C.B., Bartlett, S.F., Negussey, D. and Stuedlein, A.W. (2008), "Rapid construction and settlement behavior of embankment systems on soft foundation soils", J. Geotech. Geoenviron. Eng., 134(3), 289-301. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(289).
  37. Ferrari, A., Favero, V. and Laloui, L. (2013), "Experimental analysis of the retention behavior of shales", Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, USA.
  38. Fort, J., Sal, J., Sevcik, R., Dolezelova, M., Keppert, M., Jerman, M., Zaleska, M., Stehel, V. and Cerny, R. (2021), "Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects", Constr. Build. Mater., 271, 121544. https://doi.org/10.1016/j.conbuildmat.2020.121544.
  39. Gidebo, F.A., Yasuhara, H. and Kinoshita, N. (2023), "Stabilization of expansive soil with agricultural waste additives: a review", Int. J. Geo-Eng., 14(1), 14. https://doi.org/10.1186/s40703-023-00194-x.
  40. Gowida, A., Elkatatny, S. and Gamal, H. (2021), "Unconfined compressive strength (UCS) prediction in real-time while drilling using artificial intelligence tools", Neural Comput. Appl., 33(13), 8043-8054. https://doi.org/10.1007/s00521-020-05546-7.
  41. Grau, F., Choo, H., Hu, J. and Jung, J. (2015), "Engineering behavior and characteristics of wood ash and sugarcane Bagasse ash", Materials, 8(10), 6962-6977. https://doi.org/10.3390/ma8105353.
  42. Greenberg, S.A. (1961), "Reaction between silica and calcium hydroxide solutions, I: kinetics in the temperature range 30 to 85℃", J. Phys. Chem., 65, 12-16.
  43. Hawkins Wright (2017), 2017 wood pellet market outlook. Hawking Wright Ltd, United Kingdom. https://www.hawkinswright.com/news-andevents/blog/post/hawkins-wright-blog/2017/01/20/2017-wood-pellet-market-outlook.
  44. Ho, L.S., Nakarai, K., Ogawa, Y., Sasaki, T. and Morioka, M. (2017), "Strength development of cement-treated soils: Effects of water content, carbonation, and pozzolanic reaction under drying curing condition", Constr. Build. Mater., 134, 703-712, https://doi.org/10.1016/j.conbuildmat.2016.12.065.
  45. Holm, G. (2003), "State of practice in dry deep mixing methods", 3rd Int. Specialty Conf. on Grouting and Ground Treatment, ASCE, Reston, VA, 145-163.
  46. Horpibulsuk, S., Phetchuay, C., Chinkulkijniwat, A. and Cholaphatsorn, A. (2013), "Strength development in silty clay stabilized with calcium carbide residue and fly ash", Soils Found., 53(4), 477-486. https://doi.org/10.1016/j.sandf.2013.06.001.
  47. Iler, K.R. (1979), The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, Hoboken, NJ, USA.
  48. International Organization for Standardization (ISO) (2021), ISO 17225-1:2021 - Solid biofuels - Fuel specifications and classes - Part 1: General requirements. Geneva, Switzerland.
  49. Jain, A., Chaudhary, S. and Gupta, R. (2022), "Mechanical and microstructural characterization of fly ash blended self-compacting concrete containing granite waste", Constr. Build. Mater., 314, 125480. https://doi.org/10.1016/j.conbuildmat.2021.125480.
  50. Jing, P., Song, X., Zhang, J. and Nowamooz, H. (2022), "A review of hydro-mechanical coupling behaviour of cement-treated materials", Constr. Build. Mater., 322, 126446. https://doi.org/10.1016/j.conbuildmat.2022.126446.
  51. Keller, W.D. (1955), The principles of chemical weathering: Soil Science, Lucas Brothers, Baltimore, MD, USA.
  52. Khan, Z., Majid, A., Cascante, G., Hutchinson, D.J. and Pezeshkpour, P. (2006), "Characterization of a cemented sand with the pulse-velocity method", Can. Geotech. J., 43(3), 294-309. https://doi.org/10.1139/t06-008.
  53. Kim, J.M., Choo, Y.W., Kim, H.S., Kang, I.G., Kim, G.W., Kim, B.S., Balagosa, J., Bae, G.H., Yun, J.S., Lee, M.J., Choi, J.H. and Ra, J.M. (2021a), "Development of non-cement based soil stabilizer using wood pellet fly ash", Final research report (project No. 2020-Field-01), Korea South-East Power Co, Jinju-si, Republic of Korea. (In Korean).
  54. Kim, H.S., Kang, I.K., Shin, S.C. and Kim, J.M. (2021b), "Properties of CLSM Using Wood Pellets Fly Ash (in Korean)", Proceedings of the Korean Recycled Construction Resource Institute 2021 Fall Conference, 7-8. https://rcr.or.kr/publication/publication03_list.asp. (In Korean).
  55. Kim, S. and Kim, H. (2016), "A new metric of absolute percentage error for intermittent demand forecasts", Int. J. Forecast., 32(3), 669-679. https://doi.org/10.1016/j.ijforecast.2015.12.003.
  56. Kim, H.S., Kim, K.S. and Kim, Y.W. (2022), "Characteristics of solidification using wood pellets fly ash", Proceedings of the Korean Recycled Construction Resource Institute 2022 Fall Conference, 225-226. https://rcr.or.kr/publication/publication03_list.asp. (In Korean)
  57. Kim, H.S., Park, J.H., Shin, S.C. and Kim, J.M. (2021c), "Properties of non-cement matrix using wood pellets fly ash (in Korean)", Proceedings of the Korean Recycled Construction Resource Institute 2021 Spring Conference, 21, 3-4. https://www.auric.or.kr/User/Rdoc/DocRdoc.aspx?returnVal=RD_R&dn=405500. (In Korean).
  58. Kulanthaivel, P., Soundara, B., Selvakumar, S. and Das, A. (2022), "Effect of bio-cementation on the strength behaviour of clay soils using egg shell as calcium source", Environ. Earth Sci., 81(13), 348. https://doi.org/10.1007/s12665-022-10475-w.
  59. Lawton, E.C., Fragaszy, R.J. and Hetherington, M.D. (1992), "Review of wetting-induced collapse in compacted soil", J. Geotech. Eng., 118(9), 1376-1394. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1376).
  60. Liu, Z., Deng, P. and Zhang, Z. (2022), "Application of silica-rich biomass ash solid waste in geopolymer preparation: A review", Constr. Build. Mater., 356, 129142. https://doi.org/10.1016/j.conbuildmat.2022.129142.
  61. Lorenzo, G.A. and Bergado, D.T. (2006), "Fundamental characteristics of cement-admixed clay in deep mixing", J. Mater Civil Eng., 18(2), 161-174. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(161).
  62. Lu, N. and Likos, W. (2004), Unsaturated Soil Mechanics, Wiley, Hoboken, NJ, USA.
  63. Ma, Y., Nie, Q., Xiao, R., Hu, W., Han, B., Polaczyk, P.A. and Huang, B. (2020), "Experimental investigation of utilizing waste flue gas desulfurized gypsum as backfill materials", Constr. Build. Mater., 245, 118393. https://doi.org/10.1016/j.conbuildmat.2020.118393.
  64. Macsik, J., Edeskar, T., Rogbeck, Y. and Ribbing, C. (2012), Stabilization of road structures with fly ash as binder component - through demo projects to full scale use, ASH 2012, Stockholm, Sweden.
  65. Madhyannapu, R.S., Puppala, A.J., Nazarian, S. and Yuan, D. (2010), "Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils", J. Geotech. Geoenviron. Eng., 136(1), 119-128. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000188.
  66. Maeda, N., Katakura, T., Fukasawa, T., Huang, A.-N., Kawano, T. and Fukui, K. (2017), "Morphology of woody biomass combustion ash and enrichment of potassium components by particle size classification", Fuel Process. Tech., 156, 1-8. https://doi.org/10.1016/j.fuproc.2016.09.026.
  67. Mehta, P.K. (1983), "Mechanism of sulfate attack on portland cement concrete - Another look", Cement Concrete Res., 13(3), 401-406. https://doi.org/10.1016/0008-8846(83)90040-6.
  68. Mekonnen, E., Amdie, Y., Etefa, H., Tefera, N. and Tafesse, M. (2022), "Stabilization of expansive black cotton soil using bioenzymes produced by ureolytic bacteria", Int. J. Geo-Eng., 13(1), 10. https://doi.org/10.1186/s40703-022-00175-6.
  69. Mimini, V., Sykacek, E., Syed Hashim, S.N.A., Holzweber, J., Hettegger, H., Fackler, K., Potthast, A., Mundigler, N. and Rosenau, T. (2019). "Compatibility of kraft lignin, organosolv lignin and lignosulfonate with PLA in 3D printing", J. Wood Chem. Tech., 39(1), 14-30. https://doi.org/10.1080/02773813.2018.1488875.
  70. Min, C., Shi, Y. and Liu, Z. (2021), "Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag", Constr. Build. Mater., 305, 124786. https://doi.org/10.1016/j.conbuildmat.2021.124786.
  71. Ministry of Trade, Industry and Energy (2017a), 8th Basic Plan for Long-term Electricity Supply and Demand (BPLE) (2017 - 2031) | ESCAP Policy Documents Management. https://policy.asiapacificenergy.org/node/3844.
  72. Ministry of Trade, Industry and Energy (2017b), Korea Renewable Energy 3020 Plan - Policies: IEA. https://www.iea.org/policies/6569-korea-renewable-energy3020-plan.
  73. Misra, M.K., Ragland, K.W. and Baker, A.J. (1993), "Wood ash composition as a function of furnace temperature", Biomass Bioenergy, 4(2), 103-116, https://doi.org/10.1016/0961-9534(93)90032-Y.
  74. Muguda, S., Booth, S.J., Hughes, P.N., Augarde, C.E., Perlot, C., Bruno, A.W. and Gallipoli, D. (2017), "Mechanical properties of biopolymer-stabilised soil-based construction materials", Geotechnique Lett., 7(4), 309-314. https://doi.org/10.1680/jgele.17.00081.
  75. Murray, I. and Tarantino, A. (2019), "Mechanisms of failure in saturated and unsaturated clayey geomaterials subjected to (total) tensile stress", Geotechnique, 69(8), 701-712. https://doi.org/10.1680/jgeot.17.P.252.
  76. Narmluk, M. and Nawa, T. (2014), "Effect of curing temperature on pozzolanic reaction of fly ash in blended cement paste", Int. J. Chem. Eng. Appl., 5(1), 31-35. https://doi.org/10.7763/IJCEA.2014.V5.346.
  77. Nath, B.D., Sarkar, G., Siddiqua, S., Rokunuzzaman, Md. and Islam, Md.R. (2018), "Geotechnical properties of wood ash-based composite fine-grained soil", Adv. Civil Eng., 2018, 1-7. https://doi.org/10.1155/2018/9456019.
  78. Nunes, L.J.R., Matias, J.C.O. and Catalao, J.P.S. (2014), "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation", Renew. Sust. Energ. Rev.s, 40, 153-160. https://doi.org/10.1016/j.rser.2014.07.181.
  79. Obrzud, R. and Truty, A. (2010), The hardening soil model - a practical guidebook. Zace services.
  80. Oh, J. H., Hwang, J.S. and Cha, D.S. (2014), "Fuel Properties of Woody Pellets in Domestic Markets of Korea", J. Forest Environ. Sci., 30(4), 362-369. https://doi.org/10.7747/JFES.2014.30.4.362.
  81. Ojuri, O.O. and Epe, G.G. (2016), "Strength and leaching characteristics of crude oil contaminated sandy soil stabilized with sawdust ash-cement", In Geo Chicago 2016 American Society of Civil Engineers, 582-590.
  82. Okagbue, C.O. (2007), "Stabilization of clay using woodash", J. Mater. Civil Eng., 19(1), 14-18. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(14).
  83. Opukumo, A.W., Davie, C.T., Glendinning, S. and Oborie, E. (2022). "A review of the identification methods and types of collapsible soils", J. Eng. Appl. Sci., 69(1), 17. https://doi.org/10.1186/s44147-021-00064-2.
  84. Osinubi, K., Edeh, J. and Onoja, W. (2012), "Sawdust ash stabilization of reclaimed asphalt pavement", J. ASTM Int., 9. https://doi.org/10.1520/STP154020120022.
  85. Otoko, G.R. and Honest, B.K. (2014), "Stabilization of Nigerian deltaic laterites with saw dust ash", Int. J. Scientific Res. Management, 2(8), 1287-1292. https://doi.org/10.13140/2.1.4369.2805.
  86. Pacheco-Torgal, F., Castro-Gomes, J. and Jalali, S. (2008), "Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products", Constr. Build. Mater., 22(7), 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015.
  87. Phan, N.B., Hayano, K., Mochizuki, Y. and Yamauchi, H. (2021), "Mixture design concept and mechanical characteristics of PS ash-cement-treated clay based on the water absorption and retention performance of PS ash", Soils Found., 61(3), 692-707. https://doi.org/10.1016/j.sandf.2021.02.006.
  88. Ponzoni, E., Nocilla, A. and Jommi, C. (2021), "Determination of water retention properties of silty sands by means of combined commercial techniques", Geosci., 11(8), 315. https://doi.org/10.3390/geosciences11080315.
  89. Proskurina, S., Junginger, M., Heinimo, J., Tekinel, B. and Vakkilainen, E. (2019), "Global biomass trade for energy- Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass", Biofuels, Bioproducts and Biorefining, 13(2), 371-387. https://doi.org/10.1002/bbb.1858.
  90. Puppala, A.J., Wattanasanticharoen, E. and Punthutaecha, K. (2003), "Experimental evaluations of stabilisation methods for sulphate-rich expansive soils", Proceedings of the Institution of Civil Engineers - Ground Improvement, 7(1), 25-35. https://doi.org/10.1680/grim.2003.7.1.25.
  91. Regasa, H., Jothimani, M. and Oyda, Y. (2023). "Subgrade soil stabilization using the Quicklime: a case study from Modjo-Hawassa highway, Central Ethiopia", Int. J. Geo-Eng., 14(1), 17. https://doi.org/10.1186/s40703-023-00197-8.
  92. Roy, A. (2014), "Soil stabilization using rice husk ash and cement", Int. J. Civil Eng. Res., 5(1), 49-54.
  93. Sabat, A. and Nanda, R. (2011), "Effect of marble dust on strength and durability of Rice husk ash stabilised expansive soil", Int. J. Civil Struct. Eng., 1.
  94. Sarkkinen, M., Kujala, K., Kemppainen, K. and Gehor, S. (2018), "Effect of biomass fly ashes as road stabilisation binder", Road Mater. Pavement Des., 19(1), 239-251. https://doi.org/10.1080/14680629.2016.1235508.
  95. Skels, P., Bondars, K., Plonis, R., Haritonovs, V. and Paeglitis, A. (2016), "Usage of wood fly ash in stabilization of unbound pavement layers and soils", Proceedings of the 13th Baltic Sea Geotechnical Conference, Vilnius Gediminas Technical University, Lithuania.
  96. Sukmak, P., Kunchariyakun, K., Sukmak, G., Horpibulsuk, S., Kassawat, S. and Arulrajah, A. (2019), "Strength and microstructure of palm oil fuel ash-fly ash-soft soil geopolymer masonry units", J. Mater. Civil Eng., 31(8), 04019164. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002809.
  97. Sukprasert, S., Hoy, M., Horpibulsuk, S., Arulrajah, A., Rashid, A.S.A. and Nazir, R. (2021), "Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications", Road Mater. Pavement Des., 22(2), 357-371. https://doi.org/10.1080/14680629.2019.1621190.
  98. Sumesh, M., Alengaram, U.J., Jumaat, M.Z., Mo, K.H., Singh, R., Nayaka, R.R. and Srinivas, K. (2021), "Chemo-physico-mechanical characteristics of high-strength alkali-activated mortar containing non-traditional supplementary cementitious materials", J. Build. Eng., 44, 103368. https://doi.org/10.1016/j.jobe.2021.103368.
  99. Tang, W.C., Wang, Z., Liu, Y. and Cui, H.Z. (2018), "Influence of red mud on fresh and hardened properties of self-compacting concrete", Constr. Build. Mater., 178, 288-300. https://doi.org/10.1016/j.conbuildmat.2018.05.171.
  100. Thomas, B.S., Yang, J., Mo, K.H., Abdalla, J.A., Hawileh, R.A. and Ariyachandra, E. (2021), "Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review", J. Build. Eng., 40, 102332. https://doi.org/10.1016/j.jobe.2021.102332.
  101. Thompson, M.R. (1968), "Lime-treated soils for pavement construction", J. Highway Division, 94(2), 191-217. https://doi.org/10.1061/JHCEA2.0000274.
  102. Timoney, M.J., McCabe, B.A. and Bell, A.L. (2012), "Experiences of dry soil mixing in highly organic soils", Proceedings of the Institution of Civil Engineers - Ground Improvement, 165(1), 3-14. https://doi.org/10.1680/grim.2012.165.1.3.
  103. Vanhanen, H., Dahl, O. and Joensuu, S. (2014), "Utilization of wood ash as a road construction material - Sustainable use of wood ashes", Sustain. Environ. Res., 24(6), 457-465.
  104. Wang, F., Li, K. and Liu, Y. (2022), "Optimal water-cement ratio of cement-stabilized soil", Constr. Build. Mater., 320, 126211. https://doi.org/10.1016/j.conbuildmat.2021.126211.
  105. Wang, G., Shen, L. and Sheng, C. (2012), "Characterization of biomass ashes from power plants firing agricultural residues", Energ. Fuel., 26(1), 102-111. https://doi.org/10.1021/ef201134m.
  106. Wang, Y., Wu, A., Wang, S., Wang, H., Yang, L., Wang, Y. and Ruan, Z. (2017), "Correlative mechanism of hydraulic-mechanical property in cemented paste backfill", J. Wuhan Univ. Tech. Mater. Sci. Ed., 32(3), 579-585. https://doi.org/10.1007/s11595-017-1637-3.
  107. Wang, D., Zentar, R. and Abriak, N.E. (2018), "Durability and swelling of solidified/stabilized dredged marine soils with class-F fly ash, cement, and lime", J. Mater. Civil Eng., 30(3), 04018013. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002187.
  108. Wild, S., Kinuthia, J.M., Robinson, R.B. and Humphreys, I. (1996), "Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates", Clay Minerals, 31(3), 423-433. https://doi.org/10.1180/claymin.1996.031.3.12.
  109. Witteman, M.L. and Simms, P.H. (2017), "Unsaturated flow in hydrating porous media with application to cemented mine backfill", Can. Geotech. J., 54(6), 835-845 https://doi.org/10.1139/cgj-2015-0314.
  110. Wood Resources International (2017), South Korea, Japan wood pellet imports near records in late 2016 |Biomassmagazine.com. https://biomassmagazine.com/articles/14481/south-korea-japan-wood-pellet-imports-near-records-in-late-2016.
  111. Yi, Y., Liska, M. and Al-Tabbaa, A. (2014), "Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC", J. Mater Civil Eng., 26(2), 267-274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000806.
  112. Yi, Y., Liska, M., Jin, F. and Al-Tabbaa, A. (2016), "Mechanism of reactive magnesia - ground granulated blastfurnace slag (GGBS) soil stabilization", Can. Geotech. J., 53(5), 773-782. https://doi.org/10.1139/cgj-2015-0183.
  113. Yoon, B., Lee, W., Lee, C. and Choo, H. (2020), "Time-dependent variations of compressive strength and small-strain stiffness of sands grouted with microfine cement", J. Geotech. Geoenviron. Eng., 146(4), 06020001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002207.
  114. Yuan, S., Liu, X. and Buzzi, O. (2021), "A microstructural perspective on soil collapse", Géotechnique, 71(2), 132-140. https://doi.org/10.1680/jgeot.18.P.256.
  115. Zivari, A., Siavoshnia, M. and Rezaei, H. (2023), "Effect of lime-rice husk ash on geotechnical properties of loess soil in Golestan province, Iran", Int. J. Geo-Eng., 14(1), 20. https://doi.org/10.1186/s40703-023-00199-6.