DOI QR코드

DOI QR Code

The Role of Organic Matter in Gold Occurrence: Insights from Western Mecsek Uranium Ore Deposit

  • Medet Junussov (Department of Geological Science, Faculty of Mining and Geosciences, Nazarbayev University) ;
  • Ferenc Madai (Institute of Mineralogy and Geology, Faculty of Earth Sciences and Engineering, University of Miskolc) ;
  • Janos Foldessy (Institute of Mineralogy and Geology, Faculty of Earth Sciences and Engineering, University of Miskolc) ;
  • Maria Hamor-Vido (Department of Geology and Meteorology, Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pecs)
  • 투고 : 2024.04.05
  • 심사 : 2024.08.22
  • 발행 : 2024.08.30

초록

This paper presents analytical insights regarding into the occurrence of gold within organic matter, which is hosted by solid bitumen and closely associated with uranium ores in the Late Permian Kővágószőllős Sandstone Formation in Western Mecsek, South-West Hungary. The study utilizes a range of analytical techniques, including X-ray powder diffraction (XRPD) and wavelength dispersive X-ray fluorescence (WD-XRF) for comprehensive mineralogical and elemental analysis; organic petrography and electron microprobe analysis for characterizing organic matter; and an organic elemental analyzer for identifying organic compounds. A three-step sequential extraction method was used to liberate gold from organic matter and sulfide minerals, employing KOH, HCl, and aqua regia, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to quantify gold contents. The organic matter is identified as comprising two vitrinite types (telinite V1 and reworked V2) and three solid bitumen forms: nonfluorescing (B1) and fluorescing (B2) fillings within the V1, as well as homogenous pyrobitumen (PB) occupying narrow cracks and voids within globular quartz. Despite the samples exhibiting low total organic carbon content (<1 wt%), they display high sulfur content (up to 6 wt%) and the sequentially extracted noble metal content from the organic matter is found to total 7.45 ppm gold. The research findings suggest that organic matter plays crucial roles in ore mineralization processes. Organic matter acts as an active component in the migration of gold, uranium, and hydrocarbons within sulfur-rich hydrothermal fluids. Additionally, organic matter contributes to the entrapment and enrichment of gold in hetero-atomic organic fractions, forming metal-organic compounds. Moreover, uranium inclusions are observed as oxide/phosphate minerals within solid bitumen and associated vitrinite particles. These insights into the occurrence and distribution of gold within organic matter highlight substantial exploration potential, guiding additional research activities focused on organic matter within the Kővágószőllős Sandstone Formation at the Western Mecsek deposit.

키워드

과제정보

Special thanks are extended to Prof. Dr. F. Madai and M. Hamorne-Vido for their valuable comments and discussions. Dr. Kristaly F. is acknowledged for X-ray powder diffraction (XRPD) and electron microprobe analysis (EMPA), while Dr. Krisztian F. conducted Raman measurements. Dr. Gabor M., Dr. Oliver B., Dr. Vanyorek L., and Adam P. provided the assistance with ICP-OES, FTIR, OEA measurements, and chemical experiments. Special appreciation is extended to D. Debus, F. Moricz, J. Richards, and M. Lesko for their contributions to the laboratory experiments that supported the preparation of this paper.

참고문헌

  1. Barabas, A. (1956) Permian formation of Mecsek. The dissertation. (A mecseki perm-idoszaki kepzodmenyek - Kandidatusi Ertekezes - MAFI - Konyvtar, in Hungarian). p.94. 
  2. Barabas, A. (1979) Geological conditions of the Permian and tasks of surface geological investigations at the Mecsek ore deposit). Fold Kozl 109(3-4), p.357-365 (in Hungarian with English abstract). 
  3. Barabas, A., Konrad, Gy (eds.)., (2000) Zarojelentes a magyarorszagi uranerc-kutatasrol es a nyu-gat-mecseki uranerc-banyaszatrol. Kezirat, MECSEKERC Zrt. Foldtani Adattar. (Final report of the uranium exploration of Hungary and Western Mecsek uranium ore mining. Manuscript in Hungarian) 
  4. Barabas. A. (2013) Hasado anyagok. (Pal-Molnar E. and Biro L. eds.) In: Szilard asvanyi anyagok Magyarorszagon. (Fission mineral resources. Solid mineral resources of Hungary; in Hungarian), Geolitera publisher, SzTE TTIK Foldrajzi es Foldtani Tanszekcsoport, Szeged, p.89-121. 
  5. Baruah, M.K., Kotoky, P. and Borah, G.C. (1998) Gold in High Sulphur Indian Coals. Fuel, v.77(15), p.1867-1868. 
  6. Berner, R.A. (1969) Migration of iron and sulfur within anaerobic sediments during early diagenesis. Am. J. Sci., v.267, p.19-42. 
  7. Belin. S. (1994) Backscattered electron imaging applied to source rock sedimentology: a comparison with conventional methods in organic petrology. Bulletin Des Centres De Recherches Exploration-Production, v.18 Special Publication, p.165-187. 
  8. Cardott, B.J., Landis, C.R. and Curtis, M.E. (2015) Post-oil solid bitumen network in the Woodford Shale USA-a potential primary migration pathway. Int. J. Coal Geol., v.139, p.106-113. doi: 10.1016/j.coal.2014.08.012 
  9. Caswell, S.A., Holmes I.F. and Spears D.A. (1984a) Total chlorine in coal seam profiles from the South Stafford-shire (Cannock) coalfield. Fuel, v.63, p.782-787. doi: 10.1016/0016-2361(84)90068-1 
  10. Caswell, S.A., Holmes I.F. and Spears D.A. (1984b) Water-soluble chlorine and associated major cations from the coal and mudrocks of the Cannock and North Staffordshire coalfields. Fuel, v.63, p.774-781. doi: 10.1016/0016-2361(84)90067-X 
  11. Emsbo, P. and Koenig, A. (2007) Transport of Au in petroleum: Evidence from the northern Carlin Trend Nevada [abs]: Digging Deeper Biennial SGA Meeting 9th Dublin Society for Geology Applied to Mineral Deposits Proceedings, p.695-698. 
  12. Fazekas, Via. (1987) A mecseki perm es alsotriasz koru tormelekes formaciok asvanyos osszetetele. Foldtani Kozlony, Butt, of the Hungarian Geol. Soc., v.117, p.11-30. 
  13. Fehn, U., Cathles L.M. and Holland H.D. (1978) Hydrothermal convection and uranium deposits in abnormally radioactive plutons. Econ. Geol., v.73, p.1556-1566. doi: 10.2113/gsecongeo.73.8.1556 
  14. Foldessy, J. (1997) Exploration potential of the Western Mecsek area. Report of the Rotaqua Kft. Kovagoszollos, p.11. 
  15. Foldessy, J. (1998) Geological Report: Diagnostic sampling of the formations of the Western Mecsek mountains. Budapest, p.8. 
  16. Fodor, L., Jelen, B., Marton, E., Skaberne, D. and Vrabec, M. (1998). Miocene-Pliocene tectonic evolution of the Slovenian Periadriatic Line and surrounding area - implication for Alpine-Carpathian extrusion models. Tectonics, v.17, p.690-709. http:// dx.doi.org/10.1029/98TC01605 
  17. Giordano, T.H. (1994) Metal transport in ore fluids by organic ligand complexation in Pitman ED and Lewan MD. In (eds): Organic acids in geological processes: New York Springer-Verlag, p.319-354. 
  18. Giordano, T.H. and Kharaka, Y.K. (1994) Organic ligand distribution and speciation in sedimentary basin brines diagenetic fluids and related ore solutions in Parnell J (ed) 1994 Geofluids: Origin Migration and Evolution of Fluids in Sedimentary Basins 175 Geological Society Special Publication No 78, p.175-202. 
  19. Giordano, T.H. (2000) Organic matter as a transport agent in oreforming systems. In (ed): Giordano TH Kettler RM Wood SA Ore Genesis and Exploration: The Roles of Organic Matter Reviews in Econ. Geol., v.9, p.133-155. 
  20. Glikson, M., Golding, S.D., Boreham, C.J. and Saxby, J.D. (2000) Mineralisation in eastern Australia coals: a function of oil generation and primary migration In Glikson M and Mastalerz M (eds) OM and Mineralisation 2000 Kluwer Academic Publishers. p.314-326. 
  21. Haas, J. and Hamor G. (1998) Magyarorszag terulete szerkezetfejlodesenek osszefoglalasa, in. Borezi I. es Jambor A. (szerk.) (1998) Magyarorszag geologiai kepzodmenyeinek retegtana, MOL Rt.-MAFI kiadvany, Budapest, p.45-55. (Hungarian) 
  22. Haas, J., Budai T., Csontos L., Fodor L. and Konrad Gy. (2010) PreCenozoic geological map of Hungary, 1:500 000. Geol Inst Hung, Budapest 
  23. Hamor, T. (1994) The occurrence and morphology of sedimentary pyrite. Acta Geologica Hungarica, v.37/2-2, p.153-181. 
  24. Harrison, C.H. (1991) Electron microprobe analysis of coal macerals. Org. Geochem., v.17(4), p.439-449. 
  25. Henrique-Pinto, R., Barnes S., Savard D.D. and Mehdi S. (2015) Quantification of metals and semimetals in carbon-rich rocks: a new sequential protocol including extraction from humic substances. Geostandards and Geoanalytical Research, p.1-22. 
  26. Hower, J.C., Calder, J.H., Eble, C.F., Scott, A.C., Robertson, J.D. and Blanchard, L.J. (2000) Metalliferous coals of Westphalian A Joggins Formation, Cumberland Basin, Nova Scotia, Canada: petrology, geochemistry and palynology. Int. J. Coal Geol., v.42, p.185-206. doi: 10.1016/S0166-5162(99)00039-7 
  27. Idiz, E.F., Carlisle, D. and Kaplan, I.R. (1986) Interaction between OM and trace elements in a uranium rich bog, Kern County, California, U.S.A. Appl. Geochem., v.1, p.573-590. doi: 10.1016/0883-2927(86)90065-X 
  28. Jacob, H. (1989) Classification structure genesis and practical importance of natural solid bitumen ("migrabitumen"). Int. J. Coal Geol., v.11. p.65-79. doi: 10.1016/0166-5162(89)90113-4 
  29. Junussov, M. (2018) Characteristics, distribution and morphogenesis of gold-bearing sulfide minerals in the gold black shale deposit of Bakyrchik. International Multidisciplinary Scientific Geo Conference Surveying Geology and Mining Ecology Management, SGEM, v.18(1.1), p.643-650. 
  30. Junussov, M., Madai, F. and Oliver, B. (2018) Sequential extraction of carbonaceous siltstone rock for multielement analysis by ICP OES. Contemporary Trends in Geoscience, v.7(2), p.145-152. doi: 10.2478/ctg-2018-0010. 
  31. Junussov, M., Madai F. and Kristaly F. (2019) A two-step sequential extraction for analyzing hardly accessible precious metals in sulphide ore-bearing sedimentary rocks. Journal of geological resources and engineering, v.7(1), p.32-38. doi: 10.17265/2328-2193/2019.01.004 
  32. Junussov, M., Madai F., Kristaly F., Toth T., Fintor K., Muranszky G., Prekob A., Hamor-Vido M. (2021) Preliminary analysis on roles of metal-organic compounds in the formation of invisible gold. Acta Geochimica, 40, p.1050-1072. doi: 10.1007/s11631-021-00494-y 
  33. Junussov, M. (2022) Geological and genetic model of metal-organic compounds formation in Late Palaeozoic organic-rich sediments, using examples from Hungary and Kazakhstan. Miskolc University, Manuscript, Thesis, p.141. 
  34. Junussov, M., Mohammad, A. and Longinos, S. (2024) Geochemical analysis of organic matter associated with gold in ore deposits: A study of Kazakhstan and Hungary. Acta Geochimica, p.3-13. doi:10.1007/s11631-024-00710-5 
  35. Kadas, M. (1983). Analysis on trace elements in coals of Mecsek. Geological research. (A mecseki feketekoszen nyomelemvizsgalatanak legujabb eredmenyei. Foldtani Kutatas, in Hungarian), 26, 81-82. 
  36. Lakatos, J., Brown, S.D. and Snape, C.E. (1997) "Unexpectedly High Uptake of Palladium by Bituminous Coals," in Proceedings of ICCS'97 (DGMK, Essen, 1997), v.1, p.247-250. 
  37. Machovic, V., Havelcova M., Sykorova I., Borecka L., Lapcak L., Mizera J., Kribek B. and Krist P. (2021). Raman mapping of coal halos induced by uranium mineral radiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v.246, 118996. doi: 10.1016/j.saa.2020.118996 
  38. Migdisov, A.A., Guo, X., Xu, H., Williams-Jones, A.E, Sun, C.J., Vasyukova, O., Sugiyama, I., Fuchs, S., Pearce, K. and Roback, R. (2017) Hydrocarbons as ore fluids. Geochem Persp Let 5, p.47-52 DOI: 107185/geochemlet1745  107185/geochemlet1745
  39. Mukherjee, S. and Borthakur P.C. (2003) Effect of leaching high sulphur subbituminous coal by potassium hydroxide and acid on removal of mineral matter and sulphur. Fuel, v.82, p.783-788. doi: 10.1016/S0016-2361(02)00360-5 
  40. Nayak, B., Chakravarty S. and Bhattacharyya K.K. (2008) Invisible gold in the high-sulphur Tertiary coals of Northeast India. Current science, v.95(9), p.1334-1337. 
  41. Parnel, J., Kucha, H. and Landais, P. (1993). Bitumens in ore deposits. Special publication no. 9 of the Society for Geology Applied to Mineral Deposits, no. 9. ISBN 978-3-642-85808-6. 
  42. Raffensperger, J.P. and Garven G. (1995) The formation of unconformity-type uranium ore deposits. 2. Coupled hydrochemical modeling. Am. J. Sci., v.295, p.639-696. 
  43. Raiswell, R. (1982) Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci., v.282, p.1244-1263. doi:10.2475/ajs.282.8.1244 
  44. Rojkovic, I., Francu, J. and Caslabsky, J. (1992) Association of organic matter with uranium mineralisation in the Permian sandstones of the Western Carpathians. Geologica Carpathica, 43, 1, Bratislava, p.27-34. 
  45. Ross, R.L., Stuart, W.B. and Valeriy, V.M. (2011) Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Econ. Geol., v.106, p.331-358. doi: 10.2113/econgeo.106.3.331 
  46. Santbrd, R.F. (1994) A quantitative model of ground-water flow during tormation of tabular sandstone uranium deposits. Econ. Geol., v.89, p.341-360. doi: 10.2113/gsecongeo.89.2.341 
  47. Seredin, V.V. (2007) Distribution and Formation Conditions of Noble Metal Mineralization in Coal-Bearing Basins. 2007. ISSN 1075-7015, Geology of Ore Deposits, v.49(1), p.1-30. doi:10.1134/S1075701507010011 
  48. Seredin, V.V., Finkelman R.B. (2008) Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol., v.76, p.253-289. doi: 10.1016/j.coal.2008.07.016 
  49. Simoneit, B.R.T. (1994) Lipid/bitumen maturation by hydrothermal activity in sediments of Middle Valley Leg 139 In: Mottl M David E Fisher A Slack J (eds) Proceedings of the ocean drilling program scientific results vol 139 Ocean Drilling Program College Station. p.447-465. doi: 10.2973/odp.proc.sr.139.237.1994 
  50. Simoneit, B.R.T. (2000) Alteration and migration processes of OM in hydrothermal systems and implications for metallogenesis In: Glikson M Mastalerz M (eds) OM and mineralisation: thermal alteration hydrocarbon generation and role in metallogenesis Kluwer Academic Publishers Dordrecht: p.13-37. doi: 10.1007/978-94-015-9474-5_2 
  51. Simoneit, B.R.T. (2018) Hydrothermal Petroleum In Wilkes H (ed) Hydrocarbons Oils and Lipids: Diversity Origin Chemistry and Fate Handbook of Hydrocarbon and Lipid Microbiology Springer International Publishing AG part of Springer Nature https://doiorg/101007/978-3-319-54529-5_16-2  101007/978-3-319-54529-5_16-2
  52. Szalay, S. (1954) Enrichment of uranium in some brown coals in Hungary. Acta Geol. Acad. Sei. Hung., 2, 299-311; CA, 48, p.12629. 
  53. Szalay, A. (1969) Accumulation of uranium and other trace metals in coal and organic shales and the role of humic acids in these geochemical enrichments. Ark. Mineral. Geol., v.5(3), p.23-36. 
  54. Szederkenyi, T., Haas, J., Nagymarosy, A. and Hamor, G. (2012) Geology and History of Evolution of the Tisza Mega-Unit. p. 103-149 Book: Geology of Hungary. Editors Roland Oberhansli, Maarten de Wit, Francois M. Roure. doi: 10.1007/978-3-642-21910-8_2 
  55. Sykorova, I., Kribek, B., Havelcova, M., Machovic, V., Spaldonov, A, Lapcak, L., Knesl, I. and Blazek, J. (2016) Radiation- and self-ignition induced alterations of Permian uraniferous coal from the abandoned Nov'ator mine waste dump (Czech Republic). International Journal of Coal Geology. DOI: 10.1016/j.coal.2016.08.002 
  56. Varshal, G.M., Velyukhanova, T.K., Chkhetiya, D.N., et al. (2000) Sorbtion on Humic Acids as a Basis for the Mechanism of Primary Accumulation of Gold and Platinum Group Elements in Black Shales. Litol. Polezn. Iskop. 35 (6), 605-612 [Lithol. Miner. Resour., v.35(6), p.538-545. doi: 10.1023/A:1026645431074 
  57. Varga, E., Bella, M. and Benocs, S.K. (1972) Comparative survey of the trends of trace elements concentration in Hungarian coal fields. Puhl. Hung. Min. Res. Inst., No. 15, p.221-236. 
  58. Viragh, K. and Vincze J. (1967) A mecseki uranerclelohely kepzodesenek sajatossagai. (Specialty of uranium deposit formation in the Western Mecsek; in Hungarian). Foldtani Kozlony, 97/1, p.39-59. 
  59. Vincze, K. (1987) A mecseki felsoperm uranercesedesenek vizsgalata modellkiserletekkel. Foldt. Kozlony, Bull, of the Hungarian Geol. Soc., v.117, p.347-373. 
  60. Ward, C.R. and Gurba, L.W. (1998) Occurrence and distribution of organic sulphur in macerals of Australian coals using electron microprobe techniques. Org. Geochem., v.28(11), p.635-647. doi: 10.1016/S0146-6380(98)00038-2 
  61. Wood, S.A. (1996) The role of humic substances in the transport and fixation of metals of economic interest (Au Pt Pd U V). Ore Geol. Rev., v.11, p.1-33. doi: 10.1016/0169-1368(95)00013-5