DOI QR코드

DOI QR Code

Influence of Anaerobically Digested Dairy Waste on Growth and Bio-Active Compounds of Spirulina subsalsa (Cyanobacteria) under Semi-Continuous Culture Conditions

  • Kuntal Sarma (Department of Botany, Chaudhary Charan Singh University (CCSU)) ;
  • Preeti Chavak (Faculty of Biotechnology, Multanimal Modi College) ;
  • Doli (Department of Botany, Chaudhary Charan Singh University (CCSU)) ;
  • Manju Sharma (Department of Biotechnology, Amity University of Haryana) ;
  • Narendra Kumar (Department of Botany, Guru Ghasidas Vishwavidyalaya) ;
  • Rama Kant (Department of Botany, Chaudhary Charan Singh University (CCSU))
  • Received : 2024.01.10
  • Accepted : 2024.05.23
  • Published : 2024.06.28

Abstract

The present communication deals with the standardization of suitable medium formulation along with anaerobically digested cow's urine (ADCU) for growth of Spirulina subsalsa. Growth was evaluated on the basis of photosynthetic and non-photosynthetic pigment. The results obtained from the study indicated that, SSM-1 and SSM-2 media are suitable for maximum synthesis of chlorophyll-α and carotenoids. The obtained results also indicated that SSM-5 medium is suitable for maximum synthesis of accessory light harvesting pigments phycobiliprotein, total carbohydrate, total protein and total lipid in S. subsalsa. From the study it could be concluded that all the five media combinations (viz. SSM-1, SSM-2, SSM-3, SSM-4 and SSM-5) would be suitable for mass cultivation of S. subsalsa. But among them, SSM-5 medium combination could be the most suitable medium.

Keywords

Acknowledgement

Authors are thankful to the Head, Department of Botany, Chaudhary Charan Singh University, Meerut, India for providing necessary facilities. Author (KS and MS) is thankful to the Director AIB, AIISH, Amity Institute of Biotechnology, Gurgaon for providing necessary facilities. Authors (RK and KS) thankfully acknowledge CCS University (Ref. No. DEV/URGS/2022-2023/24, Dated: 22/7/2022) and UP Govt (F.No. 70/2022/ 1543/Sattar-4-2022/001-70-4099-7-2022 Dated: 07-07-2022) for providing financial support. Authors are also thankful to Prof. G. L. Tiwari, Ex. Head, Botany Department, University of Allahabad, Prayagraj for identification of all the strain.

References

  1. Patterson GM, Larsen LK, Moore RE. 1994. Bioactive natural products from blue-green algae. J. Appl. Phycol. 6: 151-157.  https://doi.org/10.1007/BF02186069
  2. Uzair B, Tabassum S, Rasheed M, Rehman SF. 2012. Exploring marine cyanobacteria for lead compounds of pharmaceutical importance. ScientificWorldJournal 2012: 179782. 
  3. Schwarzer D, Finking R, Marahiel MA. 2003. Nonribosomal peptides: from genes to products. Nat. Prod. Rep. 20: 275-287.  https://doi.org/10.1039/b111145k
  4. Blumenthal KM, Seibert AL. 2003. Voltage-gated sodium channel toxins: poisons, probes, and future promise. Cell Biochem. Biophys. 38: 215-237.  https://doi.org/10.1385/CBB:38:2:215
  5. Tan LT. 2007. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68: 954-979.  https://doi.org/10.1016/j.phytochem.2007.01.012
  6. Henrikson R. 1994. Microalga Spirulina, superalimento del futuro. Ronore Enterprises. 2a ed. pp. 222. EdicionesUrano, Barcelona, Espana. 
  7. Sarma K, Tyagi A, Doli, Gauri, Kumar N, Sharma M, Kant R. 2023. Optimization of nutrient media for enhanced production of bioactive compounds in Spirulina fusiformis Voronichin. J. Indian Bot. Soc. 103: 290-293. 
  8. Sofia S, Teresa M. 2016. Quantification of photosynthetic pigments of plants, water and sediment samples in Chirackal and Kattiparambu of Ernakulam district, Kerala. Int. J. Plant Soil Sci. 12: 1-7.  https://doi.org/10.9734/IJPSS/2016/27857
  9. Hellebust JA, Craigie JS. 1978. Handbook of phycological methods. Cambridge University Press. pp. 59-70. 
  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.  https://doi.org/10.1016/S0021-9258(19)52451-6
  11. Bennett A, Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58: 419-435.  https://doi.org/10.1083/jcb.58.2.419
  12. Hedge JE, Hofreiter BT. 1962. Estimation of carbohydrate. Methods in carbohydrate chemistry. Academic Press, New York, pp. 17-22. 
  13. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.  https://doi.org/10.1139/y59-099
  14. Armstrong RA, Hilton AC. 2010. One-way analysis of variance (Anova). Stat. Anal. Microbiol. Statnotes 2010: 33-37.  https://doi.org/10.1002/9780470905173.ch6
  15. Sotiroudis TG, Sotiroudis GT. 2013. Health aspects of Spirulina (Arthrospira) microalga food supplement. J. Serbian Chem. Soc. 78: 395-405.  https://doi.org/10.2298/JSC121020152S
  16. Michalak I, Chojnacka K. 2015. Algae as production systems of bioactive compounds. Eng. Life Sci. 15: 160-176.  https://doi.org/10.1002/elsc.201400191
  17. da Silva Vaz B, Moreira JB, de Morais MG, Costa JAV. 2016. Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci. 7: 73-77.  https://doi.org/10.1016/j.cofs.2015.12.006
  18. Ampofo J, Abbey L. 2022. Microalgae: Bioactive composition, health benefits, safety and prospects as potential high-value ingredients for the functional food industry. Foods 11: 1744. 
  19. Hoseini SM, Khosravi-Darani K, Mozafari MR. 2013. Nutritional and medical applications of spirulina microalgae. Mini Rev. Med. Chem. 13: 1231-1237.  https://doi.org/10.2174/1389557511313080009
  20. Ali SK, Saleh AM. 2012. Spirulina-an overview. Int. J. Pharm. Pharm. Sci. 4: 9-15. 
  21. Capelli B, Cysewski GR. 2010. Potential health benefits of Spirulina microalgae. Nutrafoods 9: 19-26.  https://doi.org/10.1007/BF03223332
  22. Ciferri O, Tiboni O. 1985. The biochemistry and industrial potential of Spirulina. Ann. Rev. Microbiol. 39: 503-526.  https://doi.org/10.1146/annurev.mi.39.100185.002443
  23. Usharani G, Saranraj P, Kanchana D. 2012. In vitro cultivation of Spirulina platensis using rice mill effluent. Int. J. Pharm. Biol. Arch. 3: 1518-1523. 
  24. Zarrouk C. 1966. Contribution a l'etude d'une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima. Thesis. University of Paris, France. 
  25. Volkmann H, Imianovsky U, Oliveira JL, Sant'Anna ES. 2008. Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian J. Microbiol. 39: 98-101.  https://doi.org/10.1590/S1517-83822008000100022
  26. Raoof B, Kaushik BD, Prasanna R. 2006. Formulation of a low-cost medium for mass production of Spirulina. Biomass Bioenergy 30: 537-542.  https://doi.org/10.1016/j.biombioe.2005.09.006
  27. Feng DL, Wu ZC. 2006. Culture of Spirulina platensis in human urine for biomass production and O2 evolution. J. Zhejiang Univ. Sci. B. 7: 34-37.  https://doi.org/10.1631/jzus.2006.B0034
  28. Bohra F. 2009. Role of light and photosynthesis on the acclimation process of the cyanobacterium Spirulina platensis to salinity stress. Chemosphere 7: 227-236. 
  29. Saranraj P, Stella D, Usharani G, Sivasakthi S. 2013. Effective recycling of Lignite Fly Ash for the laboratory cultivation of Blue Green Algae - Spirulina platensis. Int. J. Microbiol. Res. 4: 219-226. 
  30. Ak I. 2012. Effect of an organic fertilizer on growth of blue-green alga Spirulina platensis. Aquacult. Int. 20: 413-422. https://doi.org/10.1007/s10499-011-9473-5