Acknowledgement
This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (NRF-RS-2023-00207857 and NRF-RS-2024-00348108) and partially by Sookmyung Women's University Research Grants (1-2403-2019). Figure was created with BioRender.com.
References
- Philippidis A (2024) CASGEVY makes history as FDA approves first CRISPR/Cas9 genome edited therapy. Hum Gene Ther 35, 1-4 https://doi.org/10.1089/hum.2023.29263.bfs
- Parums DV (2024) First regulatory approvals for CRISPRCas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Med Sci Monit 30, e944204
- Philippidis A (2023) Graphite bio pauses lead gene editing program in sickle cell disease. Hum Gene Ther 34, 90-93 https://doi.org/10.1089/hum.2023.29234.bfs
- Maganti HB, Bailey AJ, Kirkham AM, Shorr R, Pineault N and Allan DS (2021) Persistence of CRISPR/Cas9 gene edited hematopoietic stem cells following transplantation: a systematic review and meta-analysis of preclinical studies. Stem Cells Transl Med 10, 996-1007 https://doi.org/10.1002/sctm.20-0520
- Radtke S, Humbert O and Kiem HP (2020) Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochem Pharmacol 174, 113692
- Uchida N, Li L, Nassehi T et al (2021) Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Rep Med 2, 100247
- Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood cells 4, 7-25
- Nilsson SK, Simmons PJ and Bertoncello I (2006) Hemopoietic stem cell engraftment. Exp Hematol 34, 123-129 https://doi.org/10.1016/j.exphem.2005.08.006
- Ratajczak MZ and Suszynska M (2016) Emerging strategies to enhance homing and engraftment of hematopoietic stem cells. Stem Cell Rev Rep 12, 121-128 https://doi.org/10.1007/s12015-015-9625-5
- Lapidot T and Kollet O (2010) The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program 2010, 1-6 https://doi.org/10.1182/asheducation-2010.1.1
- Aiuti A, Webb I, Bleul C, Springer T and Gutierrez-Ramos J (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185, 111-120 https://doi.org/10.1084/jem.185.1.111
- Imai Y, Shimaoka M and Kurokawa M (2010) Essential roles of VLA-4 in the hematopoietic system. Int J Hematol 91, 569-575 https://doi.org/10.1007/s12185-010-0555-3
- Krause DS, Lazarides K, Lewis JB, von Andrian UH and Van Etten RA (2014) Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood 123, 1361-1371 https://doi.org/10.1182/blood-2013-11-538694
- Xia L, McDaniel JM, Yago T, Doeden A and McEver RP (2004) Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104, 3091-3096 https://doi.org/10.1182/blood-2004-02-0650
- Rademakers T, Goedhart M, Hoogenboezem M et al (2020) Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium. Haematologica 105, 2746-2756 https://doi.org/10.3324/haematol.2018.196329
- Mitroulis I, Kalafati L, Bornhauser M, Hajishengallis G and Chavakis T (2020) Regulation of the bone marrow niche by inflammation. Front Immunol 11, 1540
- Nilsson SK, Dooner MS, Tiarks CY, Weier HU and Quesenberry PJ (1997) Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 89, 4013-4020 https://doi.org/10.1182/blood.V89.11.4013
- Al-Amoodi AS, Li Y, Al-Ghuneim A et al (2022) Refining the migration and engraftment of short-term and long-term HSCs by enhancing homing-specific adhesion mechanisms. Blood Adv 6, 4373-4391 https://doi.org/10.1182/bloodadvances.2022007465
- Nilsson SK, Johnston HM and Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97, 2293-2299 https://doi.org/10.1182/blood.V97.8.2293
- Birbrair A and Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370, 82-96 https://doi.org/10.1111/nyas.13016
- Morrison SJ and Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505, 327-334 https://doi.org/10.1038/nature12984
- Kopp HG, Avecilla ST, Hooper AT and Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20, 349-356 https://doi.org/10.1152/physiol.00025.2005
- Asada N, Kunisaki Y, Pierce H et al (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19, 214-223 https://doi.org/10.1038/ncb3475
- Sugiyama T, Kohara H, Noda M and Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977-988 https://doi.org/10.1016/j.immuni.2006.10.016
- Niswander LM, Fegan KH, Kingsley PD, McGrath KE and Palis J (2014) SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 124, 277-286 https://doi.org/10.1182/blood-2014-01-547638
- Petit I, Jin D and Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28, 299-307 https://doi.org/10.1016/j.it.2007.05.007
- Heino TJ and Maatta JA (2018) Bone marrow niche: role of different cells in bone metastasis. Curr Mol Bio Rep 4, 80-87 https://doi.org/10.1007/s40610-018-0091-0
- Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149-161 https://doi.org/10.1016/j.cell.2004.07.004
- Robles H, Park S, Joens MS, Fitzpatrick JA, Craft CS and Scheller EL (2019) Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone 118, 89-98 https://doi.org/10.1016/j.bone.2018.01.020
- Tratwal J, Rojas-Sutterlin S, Bataclan C, Blum S and Naveiras O (2021) Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract Res Clin Endocrinol Metab 35, 101564
- Chow A, Lucas D, Hidalgo A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208, 261-271 https://doi.org/10.1084/jem.20101688
- Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I and Jung S (2008) Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9, 388-395 https://doi.org/10.1038/ni1571
- Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106, 3020-3027 https://doi.org/10.1182/blood-2004-01-0272
- Yoshihara H, Arai F, Hosokawa K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685-697 https://doi.org/10.1016/j.stem.2007.10.020
- Nilsson SK, Johnston HM, Whitty GA et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106, 1232-1239 https://doi.org/10.1182/blood-2004-11-4422
- Goldman DC, Bailey AS, Pfaffle DL, Al Masri A, Christian JL and Fleming WH (2009) BMP4 regulates the hematopoietic stem cell niche. Blood 114, 4393-4401 https://doi.org/10.1182/blood-2009-02-206433
- Varnum-Finney B, Halasz LM, Sun M, Gridley T, Radtke F and Bernstein ID (2011) Notch2 governs the rate of generation of mouse long-and short-term repopulating stem cells. J Clin Invest 121, 1207-1216 https://doi.org/10.1172/JCI43868
- Hosokawa K, Arai F, Yoshihara H et al (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6, 194-198 https://doi.org/10.1016/j.stem.2009.04.013
- Sims NA and Gooi JH (2008) Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19, 444-451 https://doi.org/10.1016/j.semcdb.2008.07.016
- Winkler IG, Sims NA, Pettit AR et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815-4828 https://doi.org/10.1182/blood-2009-11-253534
- Mohamad SF, El Koussa R, Ghosh J et al (2024) Osteomacs promote maintenance of murine hematopoiesis through megakaryocyte-induced upregulation of Embigin and CD166. Stem Cell Reports 19, 486-500 https://doi.org/10.1016/j.stemcr.2024.02.004
- Bruns I, Lucas D, Pinho S et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence via CXCL4 secretion. Nat Med 20, 1315-1320 https://doi.org/10.1038/nm.3707
- Yamazaki S, Ema H, Karlsson G et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146-1158 https://doi.org/10.1016/j.cell.2011.09.053
- Zhang P, Zhang C, Li J, Han J, Liu X and Yang H (2019) The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther 10, 1-13 https://doi.org/10.1186/s13287-018-1105-9
- Bhatia M, Wang JC, Kapp U, Bonnet D and Dick JE (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A 94, 5320-5325 https://doi.org/10.1073/pnas.94.10.5320
- Goyama S, Wunderlich M and Mulloy JC (2015) Xenograft models for normal and malignant stem cells. Blood 125, 2630-2640 https://doi.org/10.1182/blood-2014-11-570218
- Kohnken R, Porcu P and Mishra A (2017) Overview of the use of murine models in leukemia and lymphoma research. Front Oncol 7, 22
- Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/γ c null mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175-3182 https://doi.org/10.1182/blood-2001-12-0207
- Ishikawa F, Yasukawa M, Lyons B et al (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chain (null) mice. Blood 106, 1565-1573 https://doi.org/10.1182/blood-2005-02-0516
- Audige A, Rochat MA, Li D et al (2017) Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells. BMC immunol 18, 28
- Civini S, Jin P, Ren J et al (2013) Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med 11, 298
- Hanoun M, Zhang D, Mizoguchi T et al (2014) Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365-375 https://doi.org/10.1016/j.stem.2014.06.020
- Sarry JE, Murphy K, Perry R et al (2011) Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J Clin Invest 121, 384-395 https://doi.org/10.1172/JCI41495
- Zhang Y, He L, Selimoglu-Buet D et al (2017) Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv 1, 972-979 https://doi.org/10.1182/bloodadvances.2017004903
- Wunderlich M, Chou F, Link KA et al (2010) AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24, 1785-1788 https://doi.org/10.1038/leu.2010.158
- Reinisch A, Thomas D, Corces MR et al (2016) A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med 22, 812-821 https://doi.org/10.1038/nm.4103
- Medyouf H, Mossner M, Jann JC et al (2014) Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14, 824-837 https://doi.org/10.1016/j.stem.2014.02.014
- Wege A, Melkus M, Denton PW, Estes J and Garcia J (2008) Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol 324, 149-165 https://doi.org/10.1007/978-3-540-75647-7_10
- Marsden MD, Kovochich M, Suree N et al (2012) HIV latency in the humanized BLT mouse. J Virol 86, 339-347 https://doi.org/10.1128/JVI.06366-11
- Wang LX, Kang G, Kumar P et al (2014) Humanized-BLT mouse model of Kaposi's sarcoma-associated herpesvirus infection. Proc Natl Acad Sci U S A 111, 3146-3151 https://doi.org/10.1073/pnas.1318175111
- Brainard DM, Seung E, Frahm N et al (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83, 7305-7321 https://doi.org/10.1128/JVI.02207-08
- Lee BC, Zhou Y, Bresciani E et al (2023) A RUNX1-FPDMM rhesus macaque model reproduces the human phenotype and predicts challenges to curative gene therapies. Blood 141, 231-237 https://doi.org/10.1182/blood.2022018193
- Lee BC, Gin A, Wu C et al (2024) Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 31, 455-466 https://doi.org/10.1016/j.stem.2024.02.010
- Wu C, Espinoza DA, Koelle SJ et al (2018) Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci Immunol 3, eaat9781
- Clevers H (2016) Modeling development and disease with organoids. Cell 165, 1586-1597 https://doi.org/10.1016/j.cell.2016.05.082
- Kim J, Koo BK and Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21, 571-584 https://doi.org/10.1038/s41580-020-0259-3
- Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318-326 https://doi.org/10.1038/nature11859
- Lancaster MA and Huch M (2019) Disease modelling in human organoids. Dis Model Mech 12, dmm039347
- Mantalaris A, Keng P, Bourne P, Chang AY and Wu JD (1998) Engineering a human bone marrow model: a case study on ex vivo erythropoiesis. Biotechnol Prog 14, 126-133 https://doi.org/10.1021/bp970136+
- Olijnik AA, Rodriguez-Romera A, Wong ZC et al (2024) Generating human bone marrow organoids for disease modeling and drug discovery. Nat Protoc 19, 2117-2146 https://doi.org/10.1038/s41596-024-00971-7
- Khan AO, Rodriguez-Romera A, Reyat JS et al (2023) Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov 13, 364-385 https://doi.org/10.1158/2159-8290.CD-22-0199
- Giger S, Hofer M, Miljkovic-Licina M et al (2022) Micro-arrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioeng 6, 036101
- Pievani A, Sacchetti B, Corsi A et al (2017) Human umbilical cord blood-borne fibroblasts contain marrow niche precursors that form a bone/marrow organoid in vivo. Development 144, 1035-1044 https://doi.org/10.1242/dev.142836
- Vallmajo-Martin Q, Broguiere N, Millan C, Zenobi-Wong M and Ehrbar M (2020) PEG/HA hybrid hydrogels for biologically and mechanically tailorable bone marrow organoids. Adv Funct Mater 30, 1910282
- Frenz-Wiessner S, Fairley SD, Buser M et al (2024) Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 21, 868-881 https://doi.org/10.1038/s41592-024-02172-2
- Boulais PE and Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125, 2621-2629 https://doi.org/10.1182/blood-2014-09-570192
- Shono Y, Ueha S, Wang Y et al (2010) Bone marrow graft-versus-host disease: early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood 115, 5401-5411 https://doi.org/10.1182/blood-2009-11-253559
- Doan P and Chute J (2012) The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26, 54-62 https://doi.org/10.1038/leu.2011.236
- Kfoury Y and Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16, 239-253 https://doi.org/10.1016/j.stem.2015.02.019
- Lee-Thedieck C, Schertl P and Klein G (2022) The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 181, 114069
- Zhang X and Yue R (2023) Stiffness matters: a soft bone marrow organoid rejuvenates hematopoietic stem cells. Mechanobiol Med 1, 100009
- de Janon A, Mantalaris A and Panoskaltsis N (2023) Three-dimensional human bone marrow organoids for the study and application of normal and abnormal hematoimmunopoiesis. J Immunol 210, 895-904 https://doi.org/10.4049/jimmunol.2200836
- Rashad HM, Insuasti G, Almeida-Porada G and Rodriguez C (2023) Multiple Myeloma 3D model: a platform for testing drug effects on myeloma in conjunction with the bone marrow niche. Cancer Res 83, 184-184 https://doi.org/10.1158/1538-7445.AM2023-184
- Ferreira MSV, Jahnen-Dechent W, Labude N et al (2012) Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33, 6987-6997 https://doi.org/10.1016/j.biomaterials.2012.06.029
- Mortera-Blanco T, Mantalaris A, Bismarck A, Aqel N and Panoskaltsis N (2011) Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials 32, 9263-9270 https://doi.org/10.1016/j.biomaterials.2011.08.051
- Cuddihy MJ, Wang Y, Machi C, Bahng JH and Kotov NA (2013) Replication of bone marrow differentiation niche: comparative evaluation of different three-dimensional matrices. Small 9, 1008-1015 https://doi.org/10.1002/smll.201202133
- Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324-336 https://doi.org/10.1016/j.cell.2007.08.025
- Reinisch A, Hernandez DC, Schallmoser K and Majeti R (2017) Generation and use of a humanized bone-marrowossicle niche for hematopoietic xenotransplantation into mice. Nat Protoc 12, 2169-2188 https://doi.org/10.1038/nprot.2017.088
- Pievani A, Donsante S, Tomasoni C et al (2021) Acute myeloid leukemia shapes the bone marrow stromal niche in vivo. Haematologica 106, 865-870 https://doi.org/10.3324/haematol.2020.247205
- Serafini M, Sacchetti B, Pievani A et al (2014) Establishment of bone marrow and hematopoietic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stromal cells. Stem Cell Res 12, 659-672 https://doi.org/10.1016/j.scr.2014.01.006
- Demirci S, Haro-Mora JJ, Leonard A et al (2020) Definitive hematopoietic stem/progenitor cells from human embryonic stem cells through serum/feeder-free organoid-induced differentiation. Stem Cell Res Ther 11, 493
- Yi SA, Zhang Y, Rathnam C, Pongkulapa T and Lee KB (2021) Bioengineering approaches for the advanced organoid research. Adv Mater 33, 2007949
- Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D and Penninger JM (2019) Generation of blood vessel organoids from human pluripotent stem cells. Nature Protoc 14, 3082-3100 https://doi.org/10.1038/s41596-019-0213-z
- Wimmer RA, Leopoldi A, Aichinger M et al (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505-510 https://doi.org/10.1038/s41586-018-0858-8
- Arranz L, Sanchez-Aguilera A, Martin-Perez D et al (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78-81 https://doi.org/10.1038/nature13383
- Han J and Zuniga-Pflucker JC (2021) High-oxygen submersion fetal thymus organ cultures enable FOXN1-dependent and-independent support of T lymphopoiesis. Front Immunol 12, 652665
- Ramos SA, Armitage LH, Morton JJ et al (2023) Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Reports 18, 829-840 https://doi.org/10.1016/j.stemcr.2023.02.013
- Zlotoff DA and Bhandoola A (2011) Hematopoietic progenitor migration to the adult thymus. Ann N Y Acad Sci 1217, 122-138 https://doi.org/10.1111/j.1749-6632.2010.05881.x
- Torisawa YS, Spina CS, Mammoto T et al (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11, 663-669 https://doi.org/10.1038/nmeth.2938
- Sieber S, Wirth L, Cavak N et al (2018) Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J Tissue Eng Regen Med 12, 479-489 https://doi.org/10.1002/term.2507
- Aleman J, George SK, Herberg S et al (2019) Deconstructed microfluidic bone marrow on-a-chip to study normal and malignant hemopoietic cell-niche interactions. Small 15, 1902971
- Glaser DE, Curtis MB, Sariano PA et al (2022) Organon-a-chip model of vascularized human bone marrow niches. Biomaterials 280, 121245
- Chou DB, Frismantas V, Milton Y et al (2020) On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng 4, 394-406 https://doi.org/10.1038/s41551-019-0495-z
- Park Y, Cheong E, Kwak JG, Carpenter R, Shim JH and Lee J (2021) Trabecular bone organoid model for studying the regulation of localized bone remodeling. Sci Adv 7, eabd6495
- Zhao D, Saiding Q, Li Y, Tang Y and Cui W (2024) Bone organoids: recent advances and future challenges. Adv Healthc Mater 13, 2302088
- Kanton S and Pasca SP (2022) Human assembloids. Development 149, dev201120
- Cannon P, Asokan A, Czechowicz A et al (2021) Safe and effective in vivo targeting and gene editing in hematopoietic stem cells: strategies for accelerating development. Hum Gene Ther 32, 31-42 https://doi.org/10.1089/hum.2020.263