DOI QR코드

DOI QR Code

Challenges and innovations in hematopoietic stem cell transplantation: exploring bone marrow niches and new model systems

  • Byung-Chul Lee (Department of Biological Sciences, Sookmyung Women's University)
  • Received : 2024.05.02
  • Accepted : 2024.06.12
  • Published : 2024.08.31

Abstract

Hematopoietic stem cell transplantation (HSCT) remains an indispensable therapeutic strategy for various hematological diseases. This review discusses the pivotal role of bone marrow (BM) niches in influencing the efficacy of HSCT and evaluates the current animal models, emphasizing their limitations and the need for alternative models. Traditional animal models, mainly murine xenograft, have provided significant insights, but due to species-specific differences, are often constrained from accurately mimicking human physiological responses. These limitations highlight the importance of developing alternative models that can more realistically replicate human hematopoiesis. Emerging models that include BM organoids and BM-on-a-chip microfluidic systems promise enhanced understanding of HSCT dynamics. These models aim to provide more accurate simulations of the human BM microenvironment, potentially leading to improved preclinical assessments and therapeutic outcomes. This review highlights the complexities of the BM niche, discusses the limitations of current models, and suggests directions for future research using advanced model systems.

Keywords

Acknowledgement

This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (NRF-RS-2023-00207857 and NRF-RS-2024-00348108) and partially by Sookmyung Women's University Research Grants (1-2403-2019). Figure was created with BioRender.com.

References

  1. Philippidis A (2024) CASGEVY makes history as FDA approves first CRISPR/Cas9 genome edited therapy. Hum Gene Ther 35, 1-4 https://doi.org/10.1089/hum.2023.29263.bfs
  2. Parums DV (2024) First regulatory approvals for CRISPRCas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Med Sci Monit 30, e944204
  3. Philippidis A (2023) Graphite bio pauses lead gene editing program in sickle cell disease. Hum Gene Ther 34, 90-93 https://doi.org/10.1089/hum.2023.29234.bfs
  4. Maganti HB, Bailey AJ, Kirkham AM, Shorr R, Pineault N and Allan DS (2021) Persistence of CRISPR/Cas9 gene edited hematopoietic stem cells following transplantation: a systematic review and meta-analysis of preclinical studies. Stem Cells Transl Med 10, 996-1007 https://doi.org/10.1002/sctm.20-0520
  5. Radtke S, Humbert O and Kiem HP (2020) Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochem Pharmacol 174, 113692
  6. Uchida N, Li L, Nassehi T et al (2021) Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Rep Med 2, 100247
  7. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood cells 4, 7-25
  8. Nilsson SK, Simmons PJ and Bertoncello I (2006) Hemopoietic stem cell engraftment. Exp Hematol 34, 123-129 https://doi.org/10.1016/j.exphem.2005.08.006
  9. Ratajczak MZ and Suszynska M (2016) Emerging strategies to enhance homing and engraftment of hematopoietic stem cells. Stem Cell Rev Rep 12, 121-128 https://doi.org/10.1007/s12015-015-9625-5
  10. Lapidot T and Kollet O (2010) The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program 2010, 1-6 https://doi.org/10.1182/asheducation-2010.1.1
  11. Aiuti A, Webb I, Bleul C, Springer T and Gutierrez-Ramos J (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185, 111-120 https://doi.org/10.1084/jem.185.1.111
  12. Imai Y, Shimaoka M and Kurokawa M (2010) Essential roles of VLA-4 in the hematopoietic system. Int J Hematol 91, 569-575 https://doi.org/10.1007/s12185-010-0555-3
  13. Krause DS, Lazarides K, Lewis JB, von Andrian UH and Van Etten RA (2014) Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood 123, 1361-1371 https://doi.org/10.1182/blood-2013-11-538694
  14. Xia L, McDaniel JM, Yago T, Doeden A and McEver RP (2004) Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104, 3091-3096 https://doi.org/10.1182/blood-2004-02-0650
  15. Rademakers T, Goedhart M, Hoogenboezem M et al (2020) Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium. Haematologica 105, 2746-2756 https://doi.org/10.3324/haematol.2018.196329
  16. Mitroulis I, Kalafati L, Bornhauser M, Hajishengallis G and Chavakis T (2020) Regulation of the bone marrow niche by inflammation. Front Immunol 11, 1540
  17. Nilsson SK, Dooner MS, Tiarks CY, Weier HU and Quesenberry PJ (1997) Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 89, 4013-4020 https://doi.org/10.1182/blood.V89.11.4013
  18. Al-Amoodi AS, Li Y, Al-Ghuneim A et al (2022) Refining the migration and engraftment of short-term and long-term HSCs by enhancing homing-specific adhesion mechanisms. Blood Adv 6, 4373-4391 https://doi.org/10.1182/bloodadvances.2022007465
  19. Nilsson SK, Johnston HM and Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97, 2293-2299 https://doi.org/10.1182/blood.V97.8.2293
  20. Birbrair A and Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370, 82-96 https://doi.org/10.1111/nyas.13016
  21. Morrison SJ and Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505, 327-334 https://doi.org/10.1038/nature12984
  22. Kopp HG, Avecilla ST, Hooper AT and Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20, 349-356 https://doi.org/10.1152/physiol.00025.2005
  23. Asada N, Kunisaki Y, Pierce H et al (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19, 214-223 https://doi.org/10.1038/ncb3475
  24. Sugiyama T, Kohara H, Noda M and Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977-988 https://doi.org/10.1016/j.immuni.2006.10.016
  25. Niswander LM, Fegan KH, Kingsley PD, McGrath KE and Palis J (2014) SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 124, 277-286 https://doi.org/10.1182/blood-2014-01-547638
  26. Petit I, Jin D and Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28, 299-307 https://doi.org/10.1016/j.it.2007.05.007
  27. Heino TJ and Maatta JA (2018) Bone marrow niche: role of different cells in bone metastasis. Curr Mol Bio Rep 4, 80-87 https://doi.org/10.1007/s40610-018-0091-0
  28. Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149-161 https://doi.org/10.1016/j.cell.2004.07.004
  29. Robles H, Park S, Joens MS, Fitzpatrick JA, Craft CS and Scheller EL (2019) Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone 118, 89-98 https://doi.org/10.1016/j.bone.2018.01.020
  30. Tratwal J, Rojas-Sutterlin S, Bataclan C, Blum S and Naveiras O (2021) Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract Res Clin Endocrinol Metab 35, 101564
  31. Chow A, Lucas D, Hidalgo A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208, 261-271 https://doi.org/10.1084/jem.20101688
  32. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I and Jung S (2008) Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9, 388-395 https://doi.org/10.1038/ni1571
  33. Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106, 3020-3027 https://doi.org/10.1182/blood-2004-01-0272
  34. Yoshihara H, Arai F, Hosokawa K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685-697 https://doi.org/10.1016/j.stem.2007.10.020
  35. Nilsson SK, Johnston HM, Whitty GA et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106, 1232-1239 https://doi.org/10.1182/blood-2004-11-4422
  36. Goldman DC, Bailey AS, Pfaffle DL, Al Masri A, Christian JL and Fleming WH (2009) BMP4 regulates the hematopoietic stem cell niche. Blood 114, 4393-4401 https://doi.org/10.1182/blood-2009-02-206433
  37. Varnum-Finney B, Halasz LM, Sun M, Gridley T, Radtke F and Bernstein ID (2011) Notch2 governs the rate of generation of mouse long-and short-term repopulating stem cells. J Clin Invest 121, 1207-1216 https://doi.org/10.1172/JCI43868
  38. Hosokawa K, Arai F, Yoshihara H et al (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6, 194-198 https://doi.org/10.1016/j.stem.2009.04.013
  39. Sims NA and Gooi JH (2008) Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19, 444-451 https://doi.org/10.1016/j.semcdb.2008.07.016
  40. Winkler IG, Sims NA, Pettit AR et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815-4828 https://doi.org/10.1182/blood-2009-11-253534
  41. Mohamad SF, El Koussa R, Ghosh J et al (2024) Osteomacs promote maintenance of murine hematopoiesis through megakaryocyte-induced upregulation of Embigin and CD166. Stem Cell Reports 19, 486-500 https://doi.org/10.1016/j.stemcr.2024.02.004
  42. Bruns I, Lucas D, Pinho S et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence via CXCL4 secretion. Nat Med 20, 1315-1320 https://doi.org/10.1038/nm.3707
  43. Yamazaki S, Ema H, Karlsson G et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146-1158 https://doi.org/10.1016/j.cell.2011.09.053
  44. Zhang P, Zhang C, Li J, Han J, Liu X and Yang H (2019) The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther 10, 1-13 https://doi.org/10.1186/s13287-018-1105-9
  45. Bhatia M, Wang JC, Kapp U, Bonnet D and Dick JE (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A 94, 5320-5325 https://doi.org/10.1073/pnas.94.10.5320
  46. Goyama S, Wunderlich M and Mulloy JC (2015) Xenograft models for normal and malignant stem cells. Blood 125, 2630-2640 https://doi.org/10.1182/blood-2014-11-570218
  47. Kohnken R, Porcu P and Mishra A (2017) Overview of the use of murine models in leukemia and lymphoma research. Front Oncol 7, 22
  48. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/γ c null mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175-3182 https://doi.org/10.1182/blood-2001-12-0207
  49. Ishikawa F, Yasukawa M, Lyons B et al (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chain (null) mice. Blood 106, 1565-1573 https://doi.org/10.1182/blood-2005-02-0516
  50. Audige A, Rochat MA, Li D et al (2017) Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells. BMC immunol 18, 28
  51. Civini S, Jin P, Ren J et al (2013) Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med 11, 298
  52. Hanoun M, Zhang D, Mizoguchi T et al (2014) Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365-375 https://doi.org/10.1016/j.stem.2014.06.020
  53. Sarry JE, Murphy K, Perry R et al (2011) Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J Clin Invest 121, 384-395 https://doi.org/10.1172/JCI41495
  54. Zhang Y, He L, Selimoglu-Buet D et al (2017) Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv 1, 972-979 https://doi.org/10.1182/bloodadvances.2017004903
  55. Wunderlich M, Chou F, Link KA et al (2010) AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24, 1785-1788 https://doi.org/10.1038/leu.2010.158
  56. Reinisch A, Thomas D, Corces MR et al (2016) A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med 22, 812-821 https://doi.org/10.1038/nm.4103
  57. Medyouf H, Mossner M, Jann JC et al (2014) Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14, 824-837 https://doi.org/10.1016/j.stem.2014.02.014
  58. Wege A, Melkus M, Denton PW, Estes J and Garcia J (2008) Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol 324, 149-165 https://doi.org/10.1007/978-3-540-75647-7_10
  59. Marsden MD, Kovochich M, Suree N et al (2012) HIV latency in the humanized BLT mouse. J Virol 86, 339-347 https://doi.org/10.1128/JVI.06366-11
  60. Wang LX, Kang G, Kumar P et al (2014) Humanized-BLT mouse model of Kaposi's sarcoma-associated herpesvirus infection. Proc Natl Acad Sci U S A 111, 3146-3151 https://doi.org/10.1073/pnas.1318175111
  61. Brainard DM, Seung E, Frahm N et al (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83, 7305-7321 https://doi.org/10.1128/JVI.02207-08
  62. Lee BC, Zhou Y, Bresciani E et al (2023) A RUNX1-FPDMM rhesus macaque model reproduces the human phenotype and predicts challenges to curative gene therapies. Blood 141, 231-237 https://doi.org/10.1182/blood.2022018193
  63. Lee BC, Gin A, Wu C et al (2024) Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 31, 455-466 https://doi.org/10.1016/j.stem.2024.02.010
  64. Wu C, Espinoza DA, Koelle SJ et al (2018) Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci Immunol 3, eaat9781
  65. Clevers H (2016) Modeling development and disease with organoids. Cell 165, 1586-1597 https://doi.org/10.1016/j.cell.2016.05.082
  66. Kim J, Koo BK and Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21, 571-584 https://doi.org/10.1038/s41580-020-0259-3
  67. Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318-326 https://doi.org/10.1038/nature11859
  68. Lancaster MA and Huch M (2019) Disease modelling in human organoids. Dis Model Mech 12, dmm039347
  69. Mantalaris A, Keng P, Bourne P, Chang AY and Wu JD (1998) Engineering a human bone marrow model: a case study on ex vivo erythropoiesis. Biotechnol Prog 14, 126-133 https://doi.org/10.1021/bp970136+
  70. Olijnik AA, Rodriguez-Romera A, Wong ZC et al (2024) Generating human bone marrow organoids for disease modeling and drug discovery. Nat Protoc 19, 2117-2146 https://doi.org/10.1038/s41596-024-00971-7
  71. Khan AO, Rodriguez-Romera A, Reyat JS et al (2023) Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov 13, 364-385 https://doi.org/10.1158/2159-8290.CD-22-0199
  72. Giger S, Hofer M, Miljkovic-Licina M et al (2022) Micro-arrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioeng 6, 036101
  73. Pievani A, Sacchetti B, Corsi A et al (2017) Human umbilical cord blood-borne fibroblasts contain marrow niche precursors that form a bone/marrow organoid in vivo. Development 144, 1035-1044 https://doi.org/10.1242/dev.142836
  74. Vallmajo-Martin Q, Broguiere N, Millan C, Zenobi-Wong M and Ehrbar M (2020) PEG/HA hybrid hydrogels for biologically and mechanically tailorable bone marrow organoids. Adv Funct Mater 30, 1910282
  75. Frenz-Wiessner S, Fairley SD, Buser M et al (2024) Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 21, 868-881 https://doi.org/10.1038/s41592-024-02172-2
  76. Boulais PE and Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125, 2621-2629 https://doi.org/10.1182/blood-2014-09-570192
  77. Shono Y, Ueha S, Wang Y et al (2010) Bone marrow graft-versus-host disease: early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood 115, 5401-5411 https://doi.org/10.1182/blood-2009-11-253559
  78. Doan P and Chute J (2012) The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26, 54-62 https://doi.org/10.1038/leu.2011.236
  79. Kfoury Y and Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16, 239-253 https://doi.org/10.1016/j.stem.2015.02.019
  80. Lee-Thedieck C, Schertl P and Klein G (2022) The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 181, 114069
  81. Zhang X and Yue R (2023) Stiffness matters: a soft bone marrow organoid rejuvenates hematopoietic stem cells. Mechanobiol Med 1, 100009
  82. de Janon A, Mantalaris A and Panoskaltsis N (2023) Three-dimensional human bone marrow organoids for the study and application of normal and abnormal hematoimmunopoiesis. J Immunol 210, 895-904 https://doi.org/10.4049/jimmunol.2200836
  83. Rashad HM, Insuasti G, Almeida-Porada G and Rodriguez C (2023) Multiple Myeloma 3D model: a platform for testing drug effects on myeloma in conjunction with the bone marrow niche. Cancer Res 83, 184-184 https://doi.org/10.1158/1538-7445.AM2023-184
  84. Ferreira MSV, Jahnen-Dechent W, Labude N et al (2012) Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33, 6987-6997 https://doi.org/10.1016/j.biomaterials.2012.06.029
  85. Mortera-Blanco T, Mantalaris A, Bismarck A, Aqel N and Panoskaltsis N (2011) Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials 32, 9263-9270 https://doi.org/10.1016/j.biomaterials.2011.08.051
  86. Cuddihy MJ, Wang Y, Machi C, Bahng JH and Kotov NA (2013) Replication of bone marrow differentiation niche: comparative evaluation of different three-dimensional matrices. Small 9, 1008-1015 https://doi.org/10.1002/smll.201202133
  87. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324-336 https://doi.org/10.1016/j.cell.2007.08.025
  88. Reinisch A, Hernandez DC, Schallmoser K and Majeti R (2017) Generation and use of a humanized bone-marrowossicle niche for hematopoietic xenotransplantation into mice. Nat Protoc 12, 2169-2188 https://doi.org/10.1038/nprot.2017.088
  89. Pievani A, Donsante S, Tomasoni C et al (2021) Acute myeloid leukemia shapes the bone marrow stromal niche in vivo. Haematologica 106, 865-870 https://doi.org/10.3324/haematol.2020.247205
  90. Serafini M, Sacchetti B, Pievani A et al (2014) Establishment of bone marrow and hematopoietic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stromal cells. Stem Cell Res 12, 659-672 https://doi.org/10.1016/j.scr.2014.01.006
  91. Demirci S, Haro-Mora JJ, Leonard A et al (2020) Definitive hematopoietic stem/progenitor cells from human embryonic stem cells through serum/feeder-free organoid-induced differentiation. Stem Cell Res Ther 11, 493
  92. Yi SA, Zhang Y, Rathnam C, Pongkulapa T and Lee KB (2021) Bioengineering approaches for the advanced organoid research. Adv Mater 33, 2007949
  93. Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D and Penninger JM (2019) Generation of blood vessel organoids from human pluripotent stem cells. Nature Protoc 14, 3082-3100 https://doi.org/10.1038/s41596-019-0213-z
  94. Wimmer RA, Leopoldi A, Aichinger M et al (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505-510 https://doi.org/10.1038/s41586-018-0858-8
  95. Arranz L, Sanchez-Aguilera A, Martin-Perez D et al (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78-81 https://doi.org/10.1038/nature13383
  96. Han J and Zuniga-Pflucker JC (2021) High-oxygen submersion fetal thymus organ cultures enable FOXN1-dependent and-independent support of T lymphopoiesis. Front Immunol 12, 652665
  97. Ramos SA, Armitage LH, Morton JJ et al (2023) Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Reports 18, 829-840 https://doi.org/10.1016/j.stemcr.2023.02.013
  98. Zlotoff DA and Bhandoola A (2011) Hematopoietic progenitor migration to the adult thymus. Ann N Y Acad Sci 1217, 122-138 https://doi.org/10.1111/j.1749-6632.2010.05881.x
  99. Torisawa YS, Spina CS, Mammoto T et al (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11, 663-669 https://doi.org/10.1038/nmeth.2938
  100. Sieber S, Wirth L, Cavak N et al (2018) Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J Tissue Eng Regen Med 12, 479-489 https://doi.org/10.1002/term.2507
  101. Aleman J, George SK, Herberg S et al (2019) Deconstructed microfluidic bone marrow on-a-chip to study normal and malignant hemopoietic cell-niche interactions. Small 15, 1902971
  102. Glaser DE, Curtis MB, Sariano PA et al (2022) Organon-a-chip model of vascularized human bone marrow niches. Biomaterials 280, 121245
  103. Chou DB, Frismantas V, Milton Y et al (2020) On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng 4, 394-406 https://doi.org/10.1038/s41551-019-0495-z
  104. Park Y, Cheong E, Kwak JG, Carpenter R, Shim JH and Lee J (2021) Trabecular bone organoid model for studying the regulation of localized bone remodeling. Sci Adv 7, eabd6495
  105. Zhao D, Saiding Q, Li Y, Tang Y and Cui W (2024) Bone organoids: recent advances and future challenges. Adv Healthc Mater 13, 2302088
  106. Kanton S and Pasca SP (2022) Human assembloids. Development 149, dev201120
  107. Cannon P, Asokan A, Czechowicz A et al (2021) Safe and effective in vivo targeting and gene editing in hematopoietic stem cells: strategies for accelerating development. Hum Gene Ther 32, 31-42 https://doi.org/10.1089/hum.2020.263