DOI QR코드

DOI QR Code

Potential role of ANGPTL4 in cancer progression, metastasis, and metabolism: a brief review

  • Min Seok Park (Program in Biomedical Science & Engineering, The Graduate School, Inha University) ;
  • Sang Eun Kim (Program in Biomedical Science & Engineering, The Graduate School, Inha University) ;
  • Pureunchowon Lee (Program in Biomedical Science & Engineering, The Graduate School, Inha University) ;
  • Ju-Hee Lee (College of Korean Medicine, Dongguk University) ;
  • Kyung Hee Jung (Department of Biomedical Sciences, College of Medicine, Inha University) ;
  • Soon-Sun Hong (Program in Biomedical Science & Engineering, The Graduate School, Inha University)
  • Received : 2024.05.18
  • Accepted : 2024.06.28
  • Published : 2024.08.31

Abstract

Angiopoietin-like 4 (ANGPTL4) has been identified as an adipokine involved in several non-metabolic and metabolic diseases, including angiogenesis, glucose homeostasis, and lipid metabolism. To date, the role of ANGPTL4 in cancer growth and progression, and metastasis, has been variable. Accumulating evidence suggests that proteolytic processing and posttranslational modifications of ANGPTL4 can significantly alter its function, and may contribute to the multiple and conflicting roles of ANGPTL4 in a tissue-dependent manner. With the growing interest in ANGPTL4 in cancer diagnosis and therapy, we aim to provide an up-to-date review of the implications of ANGPTL4 as a biomarker/oncogene in cancer metabolism, metastasis, and the tumor microenvironment (TME). In cancer cells, ANGPTL4 plays an important role in regulating metabolism by altering intracellular glucose, lipid, and amino acid metabolism. We also highlight the knowledge gaps and future prospect of ANGPTL4 in lymphatic metastasis and perineural invasion through various signaling pathways, underscoring its importance in cancer progression and prognosis. Through this review, a better understanding of the role of ANGPTL4 in cancer progression within the TME will provide new insights into other aspects of tumorigenesis and the potential therapeutic value of ANGPTL4.

Keywords

Acknowledgement

This study was supported by a research grant from Inha University.

References

  1. Zhang R (2016) The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol 6, 150272
  2. Aryal B, Price NL, Suarez Y and Fernandez-Hernando C (2019) ANGPTL4 in metabolic and cardiovascular disease. Trends Mol Med 25, 723-734 https://doi.org/10.1016/j.molmed.2019.05.010
  3. Ruscica M, Zimetti F, Adorni MP, Sirtori CR, Lupo MG and Ferri N (2020) Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: new therapeutic approaches for the treatment of atherogenic dyslipidemia. Pharmacol Res 153, 104653
  4. Sodhi A, Ma T, Menon D et al (2019) Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. J Clin Invest 129, 4593-4608 https://doi.org/10.1172/JCI120879
  5. Xin X, Rodrigues M, Umapathi M et al (2013) Hypoxic retinal Muller cells promote vascular permeability by HIF1-dependent up-regulation of angiopoietin-like 4. Proc Natl Acad Sci U S A 110, E3425-3434
  6. Tan MJ, Teo Z, Sng MK, Zhu P and Tan NS (2012) Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res 10, 677-688 https://doi.org/10.1158/1541-7786.MCR-11-0519
  7. Zhang T, Kastrenopoulou A, Larrouture Q, Athanasou NA and Knowles HJ (2018) Angiopoietin-like 4 promotes osteosarcoma cell proliferation and migration and stimulates osteoclastogenesis. BMC Cancer 18, 536
  8. Nakayama T, Hirakawa H, Shibata K et al (2011) Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer; ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep 25, 929-935 https://doi.org/10.3892/or.2011.1176
  9. Nakayama T, Hirakawa H, Shibata K, Abe K, Nagayasu T and Taguchi T (2010) Expression of angiopoietin-like 4 in human gastric cancer: ANGPTL4 promotes venous invasion. Oncol Rep 24, 599-606 https://doi.org/10.3892/or_00000897
  10. Padua D, Zhang XHF, Wang Q et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin- like 4. Cell 133, 66-77 https://doi.org/10.1016/j.cell.2008.01.046
  11. Visser KE and Joyce JA (2023) The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374-403 https://doi.org/10.1016/j.ccell.2023.02.016
  12. Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674 https://doi.org/10.1016/j.cell.2011.02.013
  13. Chiodoni C, Colombo MP and Sangaletti S (2010) Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 29, 295-307 https://doi.org/10.1007/s10555-010-9221-8
  14. Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3, 163-165 https://doi.org/10.1007/s12079-009-0069-z
  15. Xu S, Fang Y, Chang L et al (2023) STAT2-induced linc02231 promotes tumorigenesis and angiogenesis through modulation of hnRNPA1/ANGPTL4 in colorectal cancer. J Gene Med 25, e3506
  16. Zhu P, Tan MJ, Huang RL et al (2011) Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19, 401-415 https://doi.org/10.1016/j.ccr.2011.01.018
  17. Izraely S, Ben-Menachem S, Sagi-Assif O et al (2017) ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis. Oncotarget 8, 75778-75796 https://doi.org/10.18632/oncotarget.19018
  18. Gordon ER, Wright CA, James M and Cooper SJ (2023) Transcriptomic and functional analysis of ANGPTL4 overexpression in pancreatic cancer nominates novel drug targets that reverse chemoresistance. BMC Cancer 23, 524
  19. Hui B, Ji H, Xu Y et al (2019) RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis 10, 207
  20. Conway GD, Buzza MS, Martin EW et al (2019) PRSS21/testisin inhibits ovarian tumor metastasis and antagonizes proangiogenic angiopoietins ANG2 and ANGPTL4. J Mol Med (Berl) 97, 691-709 https://doi.org/10.1007/s00109-019-01763-3
  21. Fang Y, Li X, Cheng H, Zhang L and Hao J (2022) ANGPTL4 regulates lung adenocarcinoma pyroptosis and apoptosis via NLRP3\ASC\Caspase 8 signaling pathway to promote resistance to gefitinib. J Oncol 2022, 3623570
  22. Zhang Y, Liu X, Zeng L et al (2022) Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br J Cancer 127, 1760-1772 https://doi.org/10.1038/s41416-022-01956-7
  23. Kolb R, Kluz P, Tan ZW et al (2019) Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene 38, 2351-2363 https://doi.org/10.1038/s41388-018-0592-6
  24. Avalle L, Raggi L, Monteleone E et al (2022) STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts. Oncogene 41, 1456-1467 https://doi.org/10.1038/s41388-021-02172-y
  25. Xu J, Wu F, Zhu Y et al (2024) ANGPTL4 regulates ovarian cancer progression by activating the ERK1/2 pathway. Cancer Cell Int 24, 54
  26. Wen L, Zhang Y, Yang B, Han F, Ebadi AG and Toughani M (2020) Knockdown of angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol (Noisy-le-grand) 66, 117-124 https://doi.org/10.14715/cmb/2020.66.5.21
  27. Tsai YT, Wu AC, Yang WB et al (2019) ANGPTL4 Induces TMZ resistance of glioblastoma by promoting cancer stemness enrichment via the EGFR/AKT/4E-BP1 cascade. Int J Mol Sci 20, 5625
  28. Kirby MK, Ramaker RC, Gertz J et al (2016) RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4. Mol Oncol 10, 1169-1182 https://doi.org/10.1016/j.molonc.2016.05.004
  29. Argentiero A, De Summa S, Di Fonte R et al (2019) Gene expression comparison between the lymph node-positive and -negative reveals a peculiar immune microenvironment signature and a theranostic role for WNT targeting in pancreatic ductal adenocarcinoma: a pilot study. Cancers (Basel) 11, 942
  30. Yan HH, Jung KH, Lee JE et al (2021) ANGPTL4 accelerates KRAS(G12D)-induced acinar to ductal metaplasia and pancreatic carcinogenesis. Cancer Lett 519, 185-198 https://doi.org/10.1016/j.canlet.2021.07.036
  31. Hu Q, Chen S, Li Y et al (2023) ANGPTL4, a direct target of hsa-miR-133a-3p, accelerates lung adenocarcinoma lipid metabolism, proliferation and invasion. Aging 16, 8348-8360 https://doi.org/10.18632/aging.205313
  32. Kang YT, Li CT, Tang SC et al (2021) Nickel chloride regulates ANGPTL4 via the HIF-1alpha-mediated TET1 expression in lung cells. Toxicol Lett 352, 17-25 https://doi.org/10.1016/j.toxlet.2021.09.007
  33. Zhao J, Liu J, Wu N et al (2020) ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer. Oncol Lett 20, 2499-2505 https://doi.org/10.3892/ol.2020.11768
  34. Tanaka T, Imamura T, Irie A et al (2022) Association of high cellular expression and plasma concentration of angiopoietin-like 4 with tongue cancer lung metastasis and poor prognosis. Oncol Lett 24, 299
  35. Aung TM, Ciin MN, Silsirivanit A et al (2022) Serum angiopoietin-like protein 4: a potential prognostic biomarker for prediction of vascular invasion and lymph node metastasis in cholangiocarcinoma patients. Front Public Health 10, 836985
  36. Kamaludin Z, Siddig A, Yaacob NM, Lam AK and Rahman W (2022) Angiopoietin-like protein 4 and insulin-like growth factor-1 expression in invasive breast carcinoma in young women. Pathophysiology 29, 9-23 https://doi.org/10.3390/pathophysiology29010002
  37. Verine J, Lehmann-Che J, Soliman H et al (2010) Determination of angptl4 mRNA as a diagnostic marker of primary and metastatic clear cell renal-cell carcinoma. PLoS One 5, e10421
  38. Dong D, Jia L, Zhou Y, Ren L, Li J and Zhang J (2017) Serum level of ANGPTL4 as a potential biomarker in renal cell carcinoma. Urol Oncol 35, 279-285 https://doi.org/10.1016/j.urolonc.2016.12.017
  39. Zhang Y, Yang X, Liu S et al (2022) Comprehensive analysis of potential prognostic values of ANGPTLs in colorectal cancer. Genes (Basel) 13, 2215
  40. Nie D, Zheng Q, Liu L, Mao X and Li Z (2019) Upregulated of angiopoietin-like protein 4 predicts poor prognosis in cervical cancer. J Cancer 10, 1896-1901 https://doi.org/10.7150/jca.29916
  41. Wang FT, Li XP, Pan MS, Hassan M, Sun W and Fan YZ (2021) Identification of the prognostic value of elevated ANGPTL4 expression in gallbladder cancer-associated fibroblasts. Cancer Med 10, 6035-6047 https://doi.org/10.1002/cam4.4150
  42. Hata S, Nomura T, Iwasaki K et al (2017) Hypoxia-induced angiopoietin-like protein 4 as a clinical biomarker and treatment target for human prostate cancer. Oncol Rep 38, 120-128 https://doi.org/10.3892/or.2017.5669
  43. An Y, Wang Q, Sun F et al (2020) OSucs: an online prognostic biomarker analysis tool for uterine carcinosarcoma. Genes (Basel) 11, 1040
  44. Seyfrien TN and Huysentruyt LC (2013) On the origin of cancer metastasis. Crit Rev Oncog 18, 43-73 https://doi.org/10.1615/CritRevOncog.v18.i1-2.40
  45. Potente M, Gerhardt H and Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887 https://doi.org/10.1016/j.cell.2011.08.039
  46. Gealekman O, Burkart A, Nicoloro SM, Staraubhaar J and Corvera S (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295, E1056-E1064 https://doi.org/10.1152/ajpendo.90345.2008
  47. Li YK, Gao AB, Zeng T et al (2014) ANGPTL4 accelerates ovarian serous cystadenocarcinoma carcinogenesis and angiogenesis in the tumor microenvironment by activating the JAK2/STAT3 pathway and interacting with ESM1. BMB Rep 47, 512-517
  48. Huang RL, Teo Z, Chong HC et al (2011) ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood 118, 3990-4002 https://doi.org/10.1182/blood-2011-01-328716
  49. Kim SH, Park YY, Kim SW, Lee JS, Wang D and DuBois RN (2011) ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res 17, 7010-7020 https://doi.org/10.1158/0008-5472.CAN-11-1262
  50. Gong X, Hou Z, Endsley MP et al (2019) Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. NPJ Precis Oncol 3, 24
  51. Zhu X, Guo X, Wu S and Wei L (2016) ANGPTL4 Correlates with NSCLC progression and regulates epithelial-mesenchymal transition via ERK pathway. Lung 194, 637-646 https://doi.org/10.1007/s00408-016-9895-y
  52. Shen CJ, Chan SH, Lee CT, Huang WC, Tsai JP and Chen BK (2017) Oleic acid-induced ANGPTL4 enhances head and neck squamous cell carcinoma anoikis resistance and metastasis via up-regulation of fibronectin. Cancer Lett 386, 110-122 https://doi.org/10.1016/j.canlet.2016.11.012
  53. Lei X, Shi F, Basu D et al (2011) Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem 286, 15747-15756 https://doi.org/10.1074/jbc.M110.217638
  54. Hubers C, Pari AAA, Grieshober D et al (2023) Primary tumor-derived systemic nANGPTL4 inhibits metastasis. J Exp Med 220, e20202595
  55. Neophytou CM, Panagi M, Stylianopoulos T and Papageorgis P (2021) The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities. Cancers (Basel) 13, 2053
  56. Bajwa P, Kordylewicz K, Bilecz A et al (2023) Cancer-associated mesothelial cell-derived ANGPTL4 and STC1 promote the early steps of ovarian cancer metastasis. JCI Insight 8, e163019
  57. Zhou S, Tu J, Ding S et al (2020) High expression of angiopoietin-like protein 4 in advanced colorectal cancer and its association with regulatory T cells and M2 macrophages. Pathol Oncol Res 26, 1269-1278 https://doi.org/10.1007/s12253-019-00695-0
  58. Ding S, Lin Z, Zhang X et al (2023) Deficiency of angiopoietin-like 4 enhances CD8+ T cell bioactivity via metabolic reprogramming for impairing tumour progression. Immunology 170, 28-46 https://doi.org/10.1111/imm.13650
  59. Theocharis AD, Skandalis SS, Gialeli C and Karamanos NK (2016) Extracellular matrix structure. Advanced Drug Delivery Reviews 97, 4-27 https://doi.org/10.1016/j.addr.2015.11.001
  60. Jablonska-Trypuc A, Matejczyk M and Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 31, 177-183 https://doi.org/10.3109/14756366.2016.1161620
  61. Winkler J, Ogunniyan AA, Metcalf KJ and Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 11, 5120
  62. Luo L, Yang JX, Luo T, Liu D, Wu GH and He JM (2021) A study on the mechanism of PP2A in the recovery of SCI in rats through downregulation of MMP-9 via MAPK signaling pathway. Eur Rev Med Pharmacol Sci 25, 7195-7203
  63. Liao YH, Chiang KH, Huang CR et al (2017) Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene 36, 2228-2248 https://doi.org/10.1038/onc.2016.371
  64. Shen CJ, Chang KY, Lin BW et al (2020) Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis. Theranostics 10, 7083-7099 https://doi.org/10.7150/thno.44744
  65. Karaman S and Detmer M (2014) Mechanisms of lymphatic metastasis. J Clin Invest 124, 922-928 https://doi.org/10.1172/JCI71606
  66. Huang Z, Xie J, Lin S et al (2016) The downregulation of ANGPTL4 inhibits the migration and proliferation of tongue squamous cell carcinoma. Arch Oral Biol 71, 144-149 https://doi.org/10.1016/j.archoralbio.2016.07.011
  67. Zhang F, Chen H and Luo D (2023) Lymphovascular or perineural invasion is associated with lymph node metastasis and survival outcomes in patients with gastric cancer. Cancer Med 12, 9401-9408 https://doi.org/10.1002/cam4.5701
  68. Chen SH, Zhang BY, Zhou B, Zhu CZ, Sun LQ and Feng YJ (2019) Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am J Cancer Res 9, 1-21
  69. Mizuno S, Seishima R, Yamasaki J et al (2022) Angiopoietin-like 4 promotes glucose metabolism by regulating glucose transporter expression in colorectal cancer. J cancer Res Clin Oncol 148, 1351-1361 https://doi.org/10.1007/s00432-022-03960-z
  70. Phan LM, Yeung SC and Lee MH (2014) Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 11, 1-19
  71. Jang M, Kim SS and Lee J (2013) Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45, e45
  72. Park JH, Pyun WY and Park HW (2020) Cancer metabolism: phenotype, signaling and therapeutic targets. Cells 9, 2308
  73. Ward PS and Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308 https://doi.org/10.1016/j.ccr.2012.02.014
  74. Pavlova NN and Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23, 27-47 https://doi.org/10.1016/j.cmet.2015.12.006
  75. Dijk W and Kersten S (2014) Regulation of lipoprotein lipase by angptl4. Trends Endocrinol Metab 25, 146-155 https://doi.org/10.1016/j.tem.2013.12.005
  76. Koster A, Chao YB, Mosior M et al (2005) Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146, 4943-4950 https://doi.org/10.1210/en.2005-0476
  77. Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG and Kersten S (2016) Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J Lipid Res 57, 1670-1683 https://doi.org/10.1194/jlr.M067363
  78. Chong HC, Chan JS, Goh CQ et al (2014) Angiopoietin-like 4 stimulates stat3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther 22, 1593-1604 https://doi.org/10.1038/mt.2014.102
  79. Korecka A, de Wouters T, Cultrone A et al (2013) Angptl4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am J Physiol Gastrointest Liver Physiol 304, G1025-1037 https://doi.org/10.1152/ajpgi.00293.2012
  80. Mizuno S, Seishima R, Yamasaki J et al (2022) Angiopoietin-like 4 promotes glucose metabolism by regulating glucose transporter expression in colorectal cancer. J Cancer Res Clin Oncol 148, 1351-1361 https://doi.org/10.1007/s00432-022-03960-z
  81. Zheng X, Liu R, Zhou C et al (2021) Angptl4-mediated promotion of glycolysis facilitates the colonization of fusobacterium nucleatum in colorectal cancer. Cancer Res 81, 6157-6170 https://doi.org/10.1158/0008-5472.CAN-21-2273
  82. Zhu C, Teng L, Lai Y et al (2024) Adipose-derived stem cells promote glycolysis and peritoneal metastasis via tgf-β1/smad3/angptl4 axis in colorectal cancer. Cell Mol Life Sci 81, 189
  83. Xiao S, Nai-Dong W, Jin-Xiang Y et al (2022) Angptl4 regulate glutamine metabolism and fatty acid oxidation in nonsmall cell lung cancer cells. J Cell Mol Med 26, 1876-1885 https://doi.org/10.1111/jcmm.16879
  84. Cai Z, Li Y, Ma M et al (2023) Adipocytes promote pancreatic cancer migration and invasion through fatty acid metabolic reprogramming. Oncol Rep 50, 141
  85. Blucher C, Iberl S, Schwagarus N et al (2020) Secreted factors from adipose tissue reprogram tumor lipid metabolism and induce motility by modulating pparα/angptl4 and FAK. Mol Cancer Res 18, 1849-1862 https://doi.org/10.1158/1541-7786.MCR-19-1223
  86. Lin S, Miao Y, Zheng X et al (2022) Angptl4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism. Cell Death Discov 8, 225
  87. Le Jan S, Amy C, Cazes A et al (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162, 1521-1528 https://doi.org/10.1016/S0002-9440(10)64285-X