DOI QR코드

DOI QR Code

A Novel Truncated CHAP Modular Endolysin, CHAPSAP26-161, That Lyses Staphylococcus aureus, Acinetobacter baumannii, and Clostridioides difficile, and Exhibits Therapeutic Effects in a Mouse Model of A. baumannii Infection

  • Yoon-Jung Choi (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Shukho Kim (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Ram Hari Dahal (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Jungmin Kim (Department of Microbiology, School of Medicine, Kyungpook National University)
  • 투고 : 2024.02.23
  • 심사 : 2024.05.29
  • 발행 : 2024.08.28

초록

Development of novel antibacterial agents is imperative due to the increasing threat of antibiotic-resistant pathogens. This study aimed to develop the enhanced antibacterial activity and in-vivo efficacy of a novel truncated endolysin, CHAPSAP26-161, derived from the endolysin LysSAP26, against multidrug-resistant bacteria. CHAPSAP26-161 exhibited higher protein purification efficiency in E. coli and antibacterial activity than LysSAP26. Moreover, CHAPSAP26-161 showed the higher lytic activity against A. baumannii with minimal bactericidal concentrations (MBCs) of 5-10 ㎍/ml, followed by Staphylococcus aureus with MBCs of 10-25 ㎍/ml. Interestingly, CHAPSAP26-161 could lyse anaerobic bacteria, such as Clostridioides difficile, with MBCs of 25-50 ㎍/ml. At pH 4-8 and temperatures of 4℃-45℃, CHAPSAP26-161 maintained antibacterial activity without remarkable difference. The lytic activity of CHAPSAP26-161 was increased with Zn2+. In vivo tests demonstrated the therapeutic effects of CHAPSAP26-161 in murine systemic A. baumannii infection model. In conclusion, CHAPSAP26-161, a truncated endolysin that retains only the CHAP domain from LysSAP26, demonstrated enhanced protein purification efficiency and antibacterial activity compared to LysSAP26. It further displayed broad-spectrum antibacterial effects against S. aureus, A. baumannii, and C. difficile. Our in vitro and in-vivo results of CHAPSAP26-161 highlights its promise as an innovative therapeutic option against those bacteria with multiple antibiotic resistance.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education and the Korea government Ministry of Science and ICT (MSIT), grant numbers NRF-2017R1D1A3-B06032486 and NRF-2022R1F1A1073686, respectively.

참고문헌

  1. Souza SGP De, Santos IC Dos, Bondezan MAD, Corsatto LFM, Caetano ICDS, Zaniolo MM, et al. 2021. Bacteria with a potential for multidrug resistance in hospital material. Microb. Drug Resist. 27: 835-842. https://doi.org/10.1089/mdr.2019.0305
  2. Ozma MA, Abbasi A, Asgharzadeh M, Pagliano P, Guarino A, Kose S, et al. 2022. Antibiotic therapy for pan-drug-resistant infections. Infez. Med. 30: 525-531.
  3. Abram TJ, Cherukury H, Ou CY, Vu T, Toledano M, Li Y, et al. 2020. Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR. Lab Chip. 20: 477-489. https://doi.org/10.1039/C9LC01212E
  4. MC J, AV F, FK Z, FRP B, MR M, RG M, et al. 2021. Multidrug-resistant hospital bacteria: epidemiological factors and susceptibility profile. Microb. Drug Resist. 27: 433-440. https://doi.org/10.1089/mdr.2019.0209
  5. Kovtun AS, Averina O V., Alekseeva MG, Danilenko VN. 2020. Antibiotic resistance genes in the gut microbiota of children with autistic spectrum disorder as possible predictors of the disease. Microb. Drug Resist. 26: 1307-1320. https://doi.org/10.1089/mdr.2019.0325
  6. Luong T, Salabarria AC, Roach DR. 2020. Phage therapy in the resistance era: where do we stand and where are we going? Clin. Ther. 42: 1659-1680. https://doi.org/10.1016/j.clinthera.2020.07.014
  7. Hyman P. 2019. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel) 12: 35.
  8. Villa TG, Sieiro C. 2020. Phage therapy, lysin therapy, and antibiotics: a trio due to come. Antibiotics 9: 604.
  9. Housby JN, Mann NH. 2009. Phage therapy. Drug Discov. Today 14: 536-540. https://doi.org/10.1016/j.drudis.2009.03.006
  10. Schmelcher M, Loessner MJ. 2016. Bacteriophage endolysins: applications for food safety. Curr. Opin. Biotechnol. 37: 76-87. https://doi.org/10.1016/j.copbio.2015.10.005
  11. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. 2012. Endolysins as antimicrobials. Virus Res. 83: 299-365.
  12. Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, et al. 2021. Phage-encoded endolysins. Antibiotics (Basel) 10: 1-31.
  13. Heselpoth RD, Swift SM, Linden SB, Mitchell MS, Nelson DC. 2021. Enzybiotics: endolysins and bacteriocins. Bacteriophages 989-1030.
  14. Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7: 1147-1171. https://doi.org/10.2217/fmb.12.97
  15. Borysowski J, Weber-D browska B, Gorski A. 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. (Maywood) 231: 366-377. https://doi.org/10.1177/153537020623100402
  16. Gondil VS, Harjai K, Chhibber S. 2020. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int. J. Antimicrob. Agents 55: 105844.
  17. Mirski T, Mizak L, Nakonieczna A, Gryko R. 2019. Bacteriophages, phage endolysins and antimicrobial peptides - The possibilities for their common use to combat infections and in the design of new drugs. Ann. Agric. Environ. Med. 26: 203-209. https://doi.org/10.26444/aaem/105390
  18. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. 2012. Endolysins as antimicrobials. Adv. Virus Res. 83: 299-365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4
  19. Stone E, Campbell K, Grant I, McAuliffe O. 2019. Understanding and exploiting phage-host interactions. Viruses 11: 567.
  20. Becker SC, Swift S, Korobova O, Schischkova N, Kopylov P, Donovan DM, et al. 2015. Lytic activity of the Staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain. FEMS Microbiol. Lett. 362: 1-8.
  21. Filatova LY, Becker SC, Donovan DM, Gladilin AK, Klyachko NL. 2010. LysK, the enzyme lysing Staphylococcus aureus cells: specific kinetic features and approaches towards stabilization. Biochimie 92: 507-513. https://doi.org/10.1016/j.biochi.2010.01.026
  22. Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, et al. 2007. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl. Environ. Microbiol. 73: 1992-2000. https://doi.org/10.1128/AEM.02402-06
  23. Vollmer W, Blanot D, De Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32: 149-167. https://doi.org/10.1111/j.1574-6976.2007.00094.x
  24. Fenton M, Ross RP, Mcauliffe O, O'Mahony J, Coffey A. 2011. Characterization of the Staphylococcal bacteriophage lysin CHAP K. J. Appl. Microbiol. 111: 1025-1035. https://doi.org/10.1111/j.1365-2672.2011.05119.x
  25. Bateman A, Rawlings ND. 2003. The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem. Sci. 28: 234-237. https://doi.org/10.1016/S0968-0004(03)00061-6
  26. Sundarrajan S, Raghupatil J, Vipra A, Narasimhaswamy N, Saravanan S, Appaiah C, et al. 2014. Bacteriophage-derived CHAP domain protein, P128, kills Staphylococcus cells by cleaving interpeptide cross-bridge of peptidoglycan. Microbiology (United Kingdom) 160: 2157-2169.
  27. Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, et al. 2021. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184: 615-627. https://doi.org/10.1016/j.cell.2020.12.011
  28. Rahman M, Kim SSMS, Kim SSMS, Seol SY, Kim J, Marzia Rahman, et al. 2011. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 27: 1087-1093. https://doi.org/10.1080/08927014.2011.631169
  29. Kim S, Jin J-S, Choi Y-J, Kim J. 2020. LysSAP26, a new recombinant phage endolysin with a broad spectrum antibacterial activity. Viruses 12: 1340.
  30. Sandhu BK, McBride SM. 2018. Clostridioides difficile. Trends Microbiol. 26: 1049-1050. https://doi.org/10.1016/j.tim.2018.09.004
  31. Noor A, Khetarpal S. 2023. Anaerobic Infections. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan.
  32. Kim S, Lee D, Jin J, Kim J. 2020. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J. Glob Antimicrob. Resist. 22: 32-39. https://doi.org/10.1016/j.jgar.2020.01.005
  33. Kim K, Islam MM, Kim D, Yun SH, Kim J, Lee JC, et al. 2021. Characterization of a novel phage ΦAb1656-2 and its endolysin with higher antimicrobial activity against multidrug-resistant Acinetobacter baumannii. Viruses 13: 1848.
  34. Kim S, Jin J, Lee D, Kim J. 2020. Antibacterial activities of and biofilm removal by Ablysin, an endogenous lysozyme-like protein originated from Acinetobacter baumannii 1656-2. J. Glob Antimicrob. Resist. 23: 297-302. https://doi.org/10.1016/j.jgar.2020.09.017
  35. Choi YJ, Kim S, Bae S, Kim Y, Chang HH, Kim J. 2022. Antibacterial effects of recombinant endolysins in disinfecting medical equipment: a pilot study. Front. Microbiol. 12: 4380.
  36. CLSI GUIDELINES 2020.
  37. CLSI. 2020. Performance standards for antimicrobial susceptibility testing. 1-352.
  38. McHugh ML. 2011. Multiple comparison analysis testing in ANOVA. Biochem. Med. (Zagreb) 21: 203-209. https://doi.org/10.11613/BM.2011.029
  39. Hecke T Van. 2012. Power study of ANOVA versus Kruskal-Wallis test. J. Stat. Manag. Syst. 15: 241-247.
  40. Murdoch DJ, Tsai YL, Adcock J. 2008. P-values are random variables. Am. Stat. 62: 242-245. https://doi.org/10.1198/000313008X332421
  41. Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. 2019. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front. Microbiol. 10: 331.
  42. Horgan M, O'Flynn G, Garry J, Cooney J, Coffey A, Fitzgerald GF, et al. 2009. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant Staphylococci. Appl. Environ. Microbiol. 75: 872-874. https://doi.org/10.1128/AEM.01831-08
  43. Yu JH, Park DW, Lim JA, Park JH. 2021. Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition. J. Microbiol. 59: 840-847. https://doi.org/10.1007/s12275-021-1242-1
  44. O'Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. 2005. The recombinant phage lysin LysK has a broad spectrum oflytic activity against clinically relevant Staphylococci, including methicillin-resistant Staphylococcus aureus. J. Bacteriol. 187: 7161.