DOI QR코드

DOI QR Code

Advances in the Structures, Pharmacological Activities, and Biosynthesis of Plant Diterpenoids

  • Leilei Li (School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine) ;
  • Jia Fu (State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine) ;
  • Nan Liu (School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine)
  • Received : 2024.02.08
  • Accepted : 2024.05.28
  • Published : 2024.08.28

Abstract

More and more diterpenoids have attracted extensive attention due to the diverse chemical structures and excellent biological activities, and have been developed into clinical drugs or consumer products. The vast majority of diterpenoids are derived from plants. With the long-term development of plant medicinal materials, the natural resources of many plant diterpenoids are decreasing, and the biosynthetic mechanism of key active components has increasingly become a research hotspot. Using synthetic biology to engineer microorganisms into "cell factories" to produce the desired compounds is an essential means to solve these problems. In this review, we depict the plant-derived diterpenoids from chemical structure, biological activities, and biosynthetic pathways. We use representative plant diterpenes as examples to expound the research progress on their biosynthesis, and summarize the heterologous production of plant diterpenoids in microorganisms in recent years, hoping to lay the foundation for the development and application of plant diterpenoids in the future.

Keywords

References

  1. Zhu L, Chen L. 2019. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 24: 40. 
  2. Li ZM, Xu SW, Liu PQ. 2018. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharm. Sinica 39: 802-824.  https://doi.org/10.1038/aps.2017.193
  3. Yaro P, Nie J, Xu M, Zeng K, He H, Yao J, et al. 2019. Influence of organic anion transporter 1/3 on the pharmacokinetics and renal excretion of ginkgolides and bilobalide. J. Ethnopharmacol. 243: 112098. 
  4. Arumugam B, Subramaniam A, Alagaraj P. 2020. Stevia as a natural sweetener: A review. Cardiovasc. Hematol. Agents Med. Chem. 18: 94-103.  https://doi.org/10.2174/1871525718666200207105436
  5. Rizza A, Jones AM. 2019. The makings of a gradient: spatiotemporal distribution of gibberellins in plant development. Curr. Opin. Plant Biol. 47: 9-15.  https://doi.org/10.1016/j.pbi.2018.08.001
  6. Guo X, Zhang RR, Sun JY, Liu Y, Yuan XS, Chen YY, et al. 2024. The molecular mechanism of action for the potent antitumor component extracted using supercritical fluid extraction from Croton crassifolius root. J. Ethnopharmacol. 327: 117835. 
  7. Zhu H, Ren X, Huang Y, Su T, Yang L. 2023. Chemical constituents of Euphorbia stracheyi boiss (Euphorbiaceae). Metabolites 13: 852. 
  8. Ren X, Yuan X, Jiao SS, He XP, Hu H, Kang JJ, et al. 2023. Clerodane diterpenoids from the Uygur medicine Salvia deserta with immunosuppressive activity. Phytochemistry 214: 113823. 
  9. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, et al. 2010. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330: 70-74.  https://doi.org/10.1126/science.1191652
  10. Zhang P, Lee Y, Wei X, Wu J, Liu Q, Wan S. 2018. Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling. Pharm. Biol. 56: 357-362.  https://doi.org/10.1080/13880209.2018.1481108
  11. Moon JH, Lee K, Lee JH, Lee PC. 2020. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli. Microb. Cell Fact. 19: 20. 
  12. Gutbrod K, Romer J, Dormann P. 2019. Phytol metabolism in plants. Progress Lipid Res. 74: 1-17.  https://doi.org/10.1016/j.plipres.2019.01.002
  13. Lin YP, Charng YY. 2021. Chlorophyll dephytylation in chlorophyll metabolism: a simple reaction catalyzed by various enzymes. Plant Sci. 302: 110682. 
  14. Xue S, Zhang P, Tang P, Wang C, Kong L, Luo J. 2020. Acyclic diterpene and norsesquiterpene from the seed of Aphanamixis polystachya. Fitoterapia 142: 104518. 
  15. Ibrahim SRM, Mohamed GAA. 2017. Tagetones A and B, new cytotoxic monocyclic diterpenoids from flowers of Tagetes minuta. Chin. J. Nat. Med. 15: 546-549.  https://doi.org/10.1016/S1875-5364(17)30081-X
  16. Zhang J, Chen S, Sun P, Liu Y, Jiang J, Guo C, et al. 2024. Ginkgolides with anti-PAF activity from Ginkgo biloba L. Fitoterapia 175: 105915-105915. 
  17. Yu Y, Wang Y, Wang GC, Tan CY, Wang Y, Liu JS, et al. 2023. Andropanilides A-C, the novel labdane-type diterpenoids from Andrographis paniculata and their anti-inflammation activity. Nat. Prod. Bioprospect. 13: 31. 
  18. Thekkeveedu RP, Devasya RP. 2024. Biotechnological interventions for the production of forskolin, an active compound from the medicinal plant, Coleus forskohlii. Physiol. Mol. Biol. Plants 30: 213-226.  https://doi.org/10.1007/s12298-024-01426-9
  19. Li R, Morris-Natschke SL, Lee KH. 2016. Clerodane diterpenes: sources, structures, and biological activities. Nat. Prod. Rep. 33: 1166-1226.  https://doi.org/10.1039/C5NP00137D
  20. Wang M, Ma C, Chen Y, Li X, Chen J. 2019. Cytotoxic neo-clerodane diterpenoids from Scutellaria barbata D.Don. Chem. Biodivers. 16: e1800499. 
  21. Ledoux A, Hamann C, Bonnet O, Jullien K, Quetin-Leclercq J, Tchinda A, et al. 2023. Bioactive clerodane diterpenoids from the leaves of Casearia coriacea vent. Molecules 28: 1197. 
  22. Zhang C, Liu JX, Sun MQ, Mian L, Sun L. 2018. Study on fragmentation pathways of three ginkgolides by mass spectrometry. China J. Chin. Mater. Medica 43: 4093-4096. 
  23. Liao HJ, Zheng YF, Hong-Yang LI, Peng GP. 2012. Study on antinplatelet aggregation activity induced by PAF of Ginkgolide compounds. J. Liaoning University of Traditional Chinese Medicine. 
  24. Hao M, Xu J, Wen H, Du J, Zhang S, Lv M, et al. 2022. Recent advances on biological activities and structural modifications of dehydroabietic acid. Toxins 14: 632. 
  25. Gonzalez MA, Correa-Royero J, Agudelo L, Mesa A, Betancur-Galvis L. 2009. Synthesis and biological evaluation of abietic acid derivatives. Eur. J. Med. Chem. 44: 2468-2472.  https://doi.org/10.1016/j.ejmech.2009.01.014
  26. Xu J, Zhi X, Zhang Y, Ding R. 2024. Tanshinone IIA alleviates IL-1β-induced chondrocyte apoptosis and inflammation by regulating FBXO11 expression. Clinics 79: 100365. 
  27. Habtemariam S. 2023. Anti-inflammatory therapeutic mechanisms of natural products: Insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines 11: 545. 
  28. Yin XW, Bian XX, Chen YF, Zhang M, Wu L, Ren FC, et al. 2023. Structure-diversified terpenoids from Salvia prattii and their protective activity against alcoholic liver diseases. Phytochemistry 214: 113819. 
  29. Chen W, Li X, Guo S, Song N, Wang J, Jia L, et al. 2019. Tanshinone IIA harmonizes the crosstalk of autophagy and polarization in macrophages via miR-375/KLF4 pathway to attenuate atherosclerosis. Int. Immunopharmacol. 70: 486-497.  https://doi.org/10.1016/j.intimp.2019.02.054
  30. Guan Z, Chen J, Li X, Dong N. 2020. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep. 40: BSR20201807. 
  31. Sun M, Guo B, Xu M, Zhao M, Onakpa MM, Wu Z, et al. 2021. (9βH)- and 17-Nor-Pimaranes from Icacina oliviformis. J. Nat. Prod. 84: 949-955.  https://doi.org/10.1021/acs.jnatprod.9b01131
  32. Jongsomjainuk O, Boonsombat J, Thongnest S, Prawat H, Batsomboon P, Charoensutthivarakul S, et al. 2023. Kaemtakols A-D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis. Nat. Prod. Bioprospect. 13: 55. 
  33. Kim C, Le D, Lee M. 2021. Diterpenoids isolated from Podocarpus macrophyllus inhibited the inflammatory mediators in LPS-induced HT-29 and RAW 264.7 cells. Molecules (Basel, Switzerland) 26: 4326. 
  34. Zhao X, Cacherat B, Hu Q, Ma D. 2022. Recent advances in the synthesis of ent-kaurane diterpenoids. Nat. Prod. Rep. 39: 119-138.  https://doi.org/10.1039/D1NP00028D
  35. Liu M, Wang WG, Sun HD, Pu JX. 2017. Diterpenoids from Isodon species: an update. Nat. Prod. Rep. 34: 1090-1140.  https://doi.org/10.1039/C7NP00027H
  36. Camara MC, Vandenberghe LPS, Rodrigues C, de Oliveira J, Faulds C, Bertrand E, et al. 2018. Current advances in gibberellic acid (GA(3)) production, patented technologies and potential applications. Planta 248: 1049-1062.  https://doi.org/10.1007/s00425-018-2959-x
  37. Binenbaum J, Weinstain R, Shani E. 2018. Gibberellin localization and transport in plants. Trends Plant Sci. 23: 410-421.  https://doi.org/10.1016/j.tplants.2018.02.005
  38. Kildegaard KR, Arnesen JA, Adiego-Perez B, Rago D, Kristensen M, Klitgaard AK, et al. 2021. Tailored biosynthesis of gibberellin plant hormones in yeast. Metab. Eng. 66: 1-11.  https://doi.org/10.1016/j.ymben.2021.03.010
  39. Drummond GJ, Grant PS, Brimble MA. 2021. ent-Atisane diterpenoids: isolation, structure and bioactivity. Nat. Prod. Rep. 38: 330-345.  https://doi.org/10.1039/D0NP00039F
  40. Wang B, Wei Y, Zhao X, Tian X, Ning J, Zhang B, et al. 2018. Unusual ent-atisane type diterpenoids with 2-oxopropyl skeleton from the roots of Euphorbia ebracteolata and their antiviral activity against human rhinovirus 3 and enterovirus 71. Bioorg. Chem. 81: 234-240.  https://doi.org/10.1016/j.bioorg.2018.08.029
  41. Maji D, Barnawal D, Gupta A, King S, Singh AK, Kalra A. 2013. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs). World J. Microbiol. Biotechnol. 29: 833-839.  https://doi.org/10.1007/s11274-012-1238-4
  42. Li CH, Zhang JY, Zhang XY, Li SH, Gao JM. 2019. An overview of grayanane diterpenoids and their biological activities from the Ericaceae family in the last seven years. Eur. J. Med. Chem. 166: 400-416.  https://doi.org/10.1016/j.ejmech.2019.01.079
  43. Sun N, Zheng G, He M, Feng Y, Liu J, Wang M, et al. 2019. Grayanane diterpenoids from the leaves of Rhododendron auriculatum and their analgesic activities. J. Nat. Prod. 82: 1849-1860.  https://doi.org/10.1021/acs.jnatprod.9b00095
  44. Leonelli F, Migneco LM, Valletta A, Marini Bettolo R. 2021. Stemodane diterpenes and diterpenoids: Isolation, structure elucidation, biogenesis, biosynthesis, biological activity, biotransformations, metabolites and derivatives biological activity, rearrangements. Molecules 26: 2761. 
  45. Leonelli F, Valletta A, Migneco LM, Marini Bettolo R. 2019. Stemarane diterpenes and diterpenoids. Int. J. Mol. Sci. 20: 2627. 
  46. Schneider F, Pan L, Ottenbruch M, List T, Gaich T. 2021. The Chemistry of Nonclassical Taxane Diterpene. Acc. Chem. Res. 54: 2347-2360.  https://doi.org/10.1021/acs.accounts.0c00873
  47. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. 1971. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325-2327.  https://doi.org/10.1021/ja00738a045
  48. Gallego-Jara J, Lozano-Terol G, Sola-Martinez RA, Canovas-Diaz M, de Diego Puente T. 2020. A compressive review about Taxol(R): History and future challenges. Molecules 25: 5986. 
  49. Bouchet BP, Galmarini CM. 2010. Cabazitaxel, a new taxane with favorable properties. Drugs Today 46: 735-742.  https://doi.org/10.1358/dot.2010.46.10.1519019
  50. Singer JW. 2005. Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane. J. Control. Release 109: 120-126.  https://doi.org/10.1016/j.jconrel.2005.09.033
  51. Abbas MG, Muhammad R, Syed S-u-H, Zafar PR, Zafar PU. 2015. Prostratin: An overview. Mini Rev. Med. Chem. 15: 1122-1130.  https://doi.org/10.2174/1389557515666150511154108
  52. Hou P, Zeng Y, Ma B, Bi K, Chen X. 2013. A new cytotoxic cembrane diterpene from the roots of Euphorbia pekinensis Rupr. Fitoterapia 90: 10-13.  https://doi.org/10.1016/j.fitote.2013.07.004
  53. Wang K, Yu H, Wu H, Wang X, Pan Y, Chen Y, et al. 2015. A new casbane diterpene from Euphorbia pekinensis. Nat. Prod. Res. 29: 1456-1460.  https://doi.org/10.1080/14786419.2015.1027704
  54. Fattahian M, Ghanadian M, Ali Z, Khan IA. 2020. Jatrophane and rearranged jatrophane-type diterpenes: biogenesis, structure, isolation, biological activity and SARs (1984-2019). Phytochem. Rev. 19: 265-336.  https://doi.org/10.1007/s11101-020-09667-8
  55. Wang YF, Su XH, Li LG, Wang W, Zhang ML, Huo CH, et al. 2009. Verticillane derivatives from natural sources. Chem. Biodiver. 6: 1661-1673.  https://doi.org/10.1002/cbdv.200700430
  56. Bai X, Qu H, Zhang J, Li L, Zhang C, Li S, et al. 2024. Effect of steviol glycosides as natural sweeteners on glucose metabolism in adult participants. Food Funct. 15: 2908-3919. 
  57. Roy S, Ghosh A, Majie A, Karmakar V, Das S, Dinda SC, et al. 2024. Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement. Phytomedicine 129: 155638. 
  58. Grodsky L, Wilson M, Rathinasabapathy T, Komarnytsky S. 2024. Triptolide administration alters immune responses to mitigate insulin resistance in obese states. Biomolecules 14: 395. 
  59. Bidart JE, Pertino MW, Schmeda-Hirschmann G, Alche LE, Petrera E. 2023. Antiviral effect of natural and semisynthetic diterpenoids against adenovirus infection in vitro. Planta Med. 89: 1001-1009.  https://doi.org/10.1055/a-2058-3635
  60. Sadeghi Z, Cerulli A, Marzocco S, Moridi Farimani M, Masullo M, Piacente S. 2023. Anti-inflammatory activity of tanshinone-related diterpenes from Perovskia artemisioides roots. J. Nat. Prod. 86: 812-821.  https://doi.org/10.1021/acs.jnatprod.2c01004
  61. Tamuli R, Nguyen T, Macdonald JR, Pierens GK, Fisher GM, Andrews KT et al. 2023. Isolation and in vitro and in vivo activity of secondary metabolites from Clerodendrum polycephalum baker against Plasmodium Malaria parasites. J. Nat. Prod. 86: 2661-2671.  https://doi.org/10.1021/acs.jnatprod.3c00743
  62. Deng QD, Lei XP, Zhong YH, Chen MS, Ke YY, Li Z, et al. 2021. Triptolide suppresses the growth and metastasis of non-small cell lung cancer by inhibiting β-catenin-mediated epithelial-mesenchymal transition. Acta Pharmacol. Sinica 42: 1486-1497.  https://doi.org/10.1038/s41401-021-00657-w
  63. Sarwar MS, Xia YX, Liang ZM, Tsang SW, Zhang HJ. 2020. Mechanistic pathways and molecular targets of plant-derived anticancer ent-Kaurane diterpenes. Biomolecules 10: 144. 
  64. Bailly C. 2023. Yuexiandajisu diterpenoids from Euphorbia ebracteolata Hayata (Langdu roots): An overview. Phytochemistry 213: 113784. 
  65. Wang X, Wang Y, Liu Z, Zhao H, Yao GD, Liu Q, et al. 2024. New daphnane diterpenoidal 1,3,4-oxdiazole derivatives as potential anti-hepatoma agents: synthesis, biological evaluation and molecular modeling studies. Bioorg. Chem. 145: 107208. 
  66. Yazdiniapour Z, Sohrabi MH, Motinia N, Zolfaghari B, Mehdifar P, Ghanadian M, et al. 2023. Diterpenoids from Euphorbia gedrosiaca as potential anti-proliferative agents against breast cancer cells. Metabolites 13: 225. 
  67. Wang X, Yang Y, Liu X, Gao X. 2020. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza. Adv. Pharmacol. 87: 43-70.  https://doi.org/10.1016/bs.apha.2019.10.001
  68. Wang W, Wu Y, Chen X, Zhang P, Li H, Chen L. 2019. Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation of their anti-inflammatory activities. Eur. J. Med. Chem. 162: 70-79.  https://doi.org/10.1016/j.ejmech.2018.11.002
  69. Wang Y, Song Z, Guo Y, Xie H, Zhang Z, Sun D, et al. 2021. Diterpenoids from the seeds of Euphorbia lathyris and their anti-inflammatory activity. Bioorg. Chem. 112: 104944. 
  70. Kim J, Nguyen TTH, Jin J, Septiana I, Son GM, Lee GH, et al. 2019. Anti-cariogenic characteristics of rubusoside. Biotechnol. Bioprocess Eng. 24: 282-287.  https://doi.org/10.1007/s12257-018-0408-0
  71. Siddique H, Pendry B, Rahman MM. 2019. Terpenes from Zingiber montanum and heir Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus. Molecules 24: 385. 
  72. Wardana AP, Aminah NS, Rosyda M, Abdjan MI, Kristanti AN, Tun KNW, et al. 2021. Potential of diterpene compounds as antivirals, a review. Heliyon 7: e07777. 
  73. Wu Z, Xu H, Xu Y, Fan W, Yao H, Wang Y, et al. 2020. Andrographolide promotes skeletal muscle regeneration after acute injury through epigenetic modulation. Eur. J. Pharmacol. 888: 173470. 
  74. Zhang F, Koh GY, Hollingsworth J, Russo PS, Stout RW, Liu Z. 2012. Reformulation of etoposide with solubility-enhancing rubusoside. Int. J. Pharm. 434: 453-459.  https://doi.org/10.1016/j.ijpharm.2012.06.013
  75. Zhang M, Dai T, Feng N. 2017. A novel solubility-enhanced rubusoside-based micelles for increased cancer therapy. Nanoscale Res. Llett. 12: 274. 
  76. Shi JB, Wang N, Zhou H, Xu QH, Yan GT. 2019. The role of gibberellin synthase gene GhGA2ox1 in upland cotton (Gossypium hirsutum L.) responses to drought and salt stress. Biotechnol. Appl. Biochem. 66: 298-308.  https://doi.org/10.1002/bab.1725
  77. Li J, Meng X, Yin C, Zhang L, Lin B, Liu P, et al. 2023. Antimalarial and neuroprotective ent-abietane diterpenoids from the aerial parts of Phlogacanthus curviflorus. Chin. J. Nat. Med. 21: 619-630.  https://doi.org/10.1016/S1875-5364(23)60464-9
  78. Mirza FJ, Zahid S, Holsinger RMD. 2023. Neuroprotective effects of carnosic acid: Insight into its mechanisms of action. Molecules 28: 2306. 
  79. Vranova E, Coman D, Gruissem W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Ann. Rev. Plant Biol. 64: 665-700.  https://doi.org/10.1146/annurev-arplant-050312-120116
  80. Bergman ME, Davis B, Phillips MA. 2019. Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules 24: 3961. 
  81. Zerbe P, Hamberger B, Yuen MM, Chiang A, Sandhu HK, Madilao LL, et al. 2013. Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol. 162: 1073-1091.  https://doi.org/10.1104/pp.113.218347
  82. Pateraki I, Andersen-Ranberg J, Hamberger B, Heskes AM, Martens HJ, Zerbe P, et al. 2014. Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol. 164: 1222-1236.  https://doi.org/10.1104/pp.113.228429
  83. Pateraki I, Andersen-Ranberg J, Jensen NB, Wubshet SG, Heskes AM, Forman V, et al. 2017. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. ELife 6: e23001. 
  84. Mastan A, Rane D, Dastager SG, Vivek Babu CS. 2020. Plant probiotic bacterial endophyte, Alcaligenes faecalis, modulates plant growth and forskolin biosynthesis in Coleus forskohlii. Probiotics Antimicrob. Proteins 12: 481-493.  https://doi.org/10.1007/s12602-019-09582-1
  85. Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, et al. 2009. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org. Lett. 11: 5170-5173.  https://doi.org/10.1021/ol902051v
  86. Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, et al. 2013. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. USA 110: 12108-12113.  https://doi.org/10.1073/pnas.1218061110
  87. Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, et al. 2016. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol. 210: 525-534.  https://doi.org/10.1111/nph.13790
  88. Mao Y, Ma Y, Chen T, Ma X, Xu Y, Bu J, et al. 2020. Functional integration of two CYP450 genes involved in biosynthesis of tanshinones for improved diterpenoid production by synthetic biology. ACS Synth. Biol. 9: 1763-1770.  https://doi.org/10.1021/acssynbio.0c00136
  89. Ma Y, Cui G, Chen T, Ma X, Wang R, Jin B, et al. 2021. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nat. Commun. 12: 685. 
  90. Deng C, Hao X, Shi M, Fu R, Wang Y, Zhang Y, et al. 2019. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci. 284: 1-8.  https://doi.org/10.1016/j.plantsci.2019.03.007
  91. Zheng H, Jing L, Jiang X, Pu C, Zhao S, Yang J, et al. 2021. The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza. New Phytol. 231: 1940-1955.  https://doi.org/10.1111/nph.17463
  92. Lv X, Zhang W, Chu S, Zhang H, Wu Y, Zhu Y, et al. 2024. Endophytic fungus Penicillium steckii DF33 promoted tanshinones biosynthesis in Salvia miltiorrhiza by regulating the expression of CYP450 genes. Gene 899: 148094. 
  93. Li X, Lin Y, Qin Y, Han G, Wang H, Yan Z. 2024. Beneficial endophytic fungi improve the yield and quality of Salvia miltiorrhiza by performing different ecological functions. PeerJ. 12: e16959. 
  94. Xu Y, Wang X, Zhang C, Zhou X, Xu X, Han L, et al. 2022. De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nat. Commun. 13: 3040. 
  95. Wang Y, Sun X, Jia X, Zhu L, Yin H. 2021. Comparative transcriptomic of Stevia rebaudiana provides insight into rebaudioside D and rebaudioside M biosynthesis. Plant Physiol. Biochem. PPB. 167: 541-549.  https://doi.org/10.1016/j.plaphy.2021.08.028
  96. Zhang J, Tang M, Chen Y, Ke D, Zhou J, Xu X, et al. 2021. Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides. Nat. Commun. 12: 7030. 
  97. Dewitte G, Walmagh M, Diricks M, Lepak A, Gutmann A, Nidetzky B, et al. 2016. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1. J. Biotechnol. 233: 49-55.  https://doi.org/10.1016/j.jbiotec.2016.06.034
  98. Chau M, Croteau R. 2004. Molecular cloning and characterization of a cytochrome P450 taxoid 2alpha-hydroxylase involved in Taxol biosynthesis. Arch. Biochem. Biophys. 427: 48-57.  https://doi.org/10.1016/j.abb.2004.04.016
  99. Chau M, Jennewein S, Walker K, Croteau R. 2004. Taxol biosynthesis: Molecular cloning and characterization of a cytochrome P450 taxoid 7 beta-hydroxylase. Chem. Biol. 11: 663-672.  https://doi.org/10.1016/S1074-5521(04)00111-5
  100. Schoendorf A, Rithner CD, Williams RM, Croteau RB. 2001. Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl. Acad. Sci. USA 98: 1501-1506.  https://doi.org/10.1073/pnas.98.4.1501
  101. Jennewein S, Long RM, Williams RM, Croteau R. 2004. Cytochrome P450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem. Biol. 11: 379-387.  https://doi.org/10.1016/j.chembiol.2004.02.022
  102. Jennewein S, Rithner CD, Williams RM, Croteau RB. 2001. Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA 98: 13595-13600.  https://doi.org/10.1073/pnas.251539398
  103. Walker K, Schoendorf A, Croteau R. 2000. Molecular cloning of a taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch. Biochem. Biophys. 374: 371-380.  https://doi.org/10.1006/abbi.1999.1609
  104. Walker K, Croteau R. 2000. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 583-587.  https://doi.org/10.1073/pnas.97.2.583
  105. Walker K, Croteau R. 2000. Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2alpha-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 13591-13596.  https://doi.org/10.1073/pnas.250491997
  106. Bartsch S, Wybenga GG, Jansen M, Heberling MM, Wu B, Dijkstra BW, et al. 2013. Redesign of a phenylalanine aminomutase into a phenylalanine ammonia lyase. ChemCatChem 5: 1797-1802.  https://doi.org/10.1002/cctc.201200871
  107. Walker KD, Klettke K, Akiyama T, Croteau R. 2004. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in Taxol biosynthesis. J. Biol. Chem. 279: 53947-53954.  https://doi.org/10.1074/jbc.M411215200
  108. Walker K, Fujisaki S, Long R, Croteau R. 2002. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA 99: 12715-12720.  https://doi.org/10.1073/pnas.192463699
  109. Walker K, Long R, Croteau R. 2002. The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc. Natl. Acad. Sci. USA 99: 9166-9171.  https://doi.org/10.1073/pnas.082115799
  110. Zhang Y, Wiese L, Fang H, Alseekh S, Perez de Souza L, Scossa F, et al. 2023. Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis. Mol. Plant 16: 1951-1961. 
  111. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496: 528-532.  https://doi.org/10.1038/nature12051
  112. Dai Z, Wang B, Liu Y, Shi M, Wang D, Zhang X, et al. 2014. Producing aglycons of ginsenosides in bakers' yeast. Sci. Rep. 4: 3698. 
  113. Zhang B, Yao Z, Liu Z, Zheng Y. 2021. Metabolic engineering of Escherichia coli for L-homoserine production. Sheng wu gong cheng xue bao Chin. J. Biotechnol. 37: 1287-1297. 
  114. Kong MK, Kang HJ, Kim JH, Oh SH, Lee PC. 2015. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli. J. Biotechnol. 214: 95-102.  https://doi.org/10.1016/j.jbiotec.2015.09.016
  115. Sun Y, Chen Z, Wang G, Lv H, Mao Y, Ma K, et al. 2022. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metab. Eng. 73: 201-213.  https://doi.org/10.1016/j.ymben.2022.08.001
  116. Dong H, Chen S, Zhu J, Gao K, Zha W, Lin P, et al. 2020. Enhance production of diterpenoids in yeast by overexpression of the fused enzyme of ERG20 and its mutant mERG20. J. Biotechnol. 307: 29-34.  https://doi.org/10.1016/j.jbiotec.2019.10.019
  117. Hu T, Zhou J, Tong Y, Su P, Li X, Liu Y, et al. 2020. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab. Eng. 60: 87-96.  https://doi.org/10.1016/j.ymben.2020.03.011
  118. Forman V, Bjerg-Jensen N, Dyekjaer JD, Moller BL, Pateraki I. 2018. Engineering of CYP76AH15 can improve activity and specificity towards forskolin biosynthesis in yeast. Microb. Cell Fact. 17: 181. 
  119. Ju H, Zhang C, He S, Nan W, Lu W. 2022. Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin. Appl. Microbiol. Biotechnol. 106: 1933-1944.  https://doi.org/10.1007/s00253-022-11819-z
  120. Wei P, Zhang C, Bian X, Lu W. 2022. Metabolic engineering of Saccharomyces cerevisiae for heterologous carnosic acid production. Front. Bioeng. Biotechnol. 10: 916605. 
  121. Einhaus A, Steube J, Freudenberg RA, Barczyk J, Baier T, Kruse O. 2022. Engineering a powerful green cell factory for robust photoautotrophic diterpenoid production. Metab. Eng. 73: 82-90.  https://doi.org/10.1016/j.ymben.2022.06.002
  122. Khalid A, Takagi H, Panthee S, Muroi M, Chappell J, Osada H, et al. 2017. Development of a terpenoid-production platform in Streptomyces reveromyceticus SN-593. ACS Synth. Biol. 6: 2339-2349.  https://doi.org/10.1021/acssynbio.7b00249
  123. Yamada Y, Arima S, Nagamitsu T, Johmoto K, Uekusa H, Eguchi T, et al. 2015. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. J. Antibiotics 68: 385-394.  https://doi.org/10.1038/ja.2014.171
  124. Wang J, Li S, Xiong Z, Wang Y. 2015. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli. Cell Res. 26: 258-261.  https://doi.org/10.1038/cr.2015.111
  125. Xuan C, Wei Y, Yu C, Shan Y, K ZZ, Jens N, et al. 2022. Engineering yeast for high-level production of diterpenoid sclareol. Metab. Eng. 75: 19-28.  https://doi.org/10.1016/j.ymben.2022.11.002
  126. Norkin M, Ordonez-Moran P, Huelsken J. 2021. High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Rep. 35: 109026. 
  127. Dong Y, Zhao Q, Wang Y. 2021. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci. Rep. 11: 19496. 
  128. Murthy BN, Sinha S, Surolia A, Indi SS, Jayaraman N. 2008. SPR and ITC determination of the kinetics and the thermodynamics of bivalent versus monovalent sugar ligand-lectin interactions. Glycoconj. J. 25: 313-321.  https://doi.org/10.1007/s10719-007-9076-6
  129. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. 2015. Molecular docking and structure-based drug design strategies. Molecules 20: 13384-13421.  https://doi.org/10.3390/molecules200713384
  130. Xu X, Yuan H, Yu X, Huang S, Sun Y, Zhang T, et al. 2021. The chromosome-level Stevia genome provides insights into steviol glycoside biosynthesis. Hortic. Res. 8: 129.