DOI QR코드

DOI QR Code

Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi

  • Sohyeong Choi (Department of Systems Biotechnology, Chung-Ang University) ;
  • James W. Kronstad (Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia) ;
  • Won Hee Jung (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2024.05.17
  • Accepted : 2024.06.10
  • Published : 2024.08.28

Abstract

Fungi employ diverse mechanisms for iron uptake to ensure proliferation and survival in iron-limited environments. Siderophores are secondary metabolite small molecules with a high affinity specifically for ferric iron; these molecules play an essential role in iron acquisition in fungi and significantly influence fungal physiology and virulence. Fungal siderophores, which are primarily hydroxamate types, are synthesized via non-ribosomal peptide synthetases (NRPS) or NRPS-independent pathways. Following synthesis, siderophores are excreted, chelate iron, and are transported into the cell by specific cell membrane transporters. In several human pathogenic fungi, siderophores are pivotal for virulence, as inhibition of their synthesis or transport significantly reduces disease in murine models of infection. This review briefly highlights siderophore biosynthesis and transport mechanisms in fungal pathogens as well the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Understanding siderophore biosynthesis and transport in pathogenic fungi provides valuable insights into fungal biology and illuminates potential therapeutic targets for combating fungal infections.

Keywords

Acknowledgement

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022 (S.C.), the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning, 2022R1F1A1065306 (W.H.J), and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI053721 (to J.W.K.). J.W.K. is a Burroughs Wellcome Fund Scholar in Molecular Pathogenic Mycology and the Power Corporation fellow of the CIFAR program: Fungal Kingdom, Threats & Opportunities.

References

  1. Puja H, Mislin GLA, Rigouin C. 2023. Engineering Siderophore biosynthesis and regulation pathways to increase diversity and availability. Biomolecules 13: 959
  2. Timofeeva AM, Galyamova MR, Sedykh SE. 2022. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants (Basel) 11: 3065 .
  3. Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A, et al. 2021. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J. Fungi (Basel) 8: 21.
  4. Neilands JB. 1952. A crystalline organo-iron pigment from a rust fungus (Ustilago-Sphaerogena). J. Am. Chem. Soc. 74: 4846-4847. https://doi.org/10.1021/ja01139a033
  5. Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings BL, Williams JH. 1952. Coprogen, a new growth factor for coprophilic fungi. J. Am. Chem. Soc. 74: 1362-1362.
  6. Hider RC, Kong X. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27: 637-657. https://doi.org/10.1039/b906679a
  7. Ito T, Neilands JB. 1958. Products of low-iron fermentation with Bacillus -Subtilis - isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine. J. Am. Chem. Soc. 80: 4645-4647. https://doi.org/10.1021/ja01550a058
  8. Thieken A, Winkelmann G. 1992. Rhizoferrin: a complexone type siderophore of the Mucorales and entomophthorales (Zygomycetes). FEMS Microbiol. Lett. 73: 37-41. https://doi.org/10.1111/j.1574-6968.1992.tb05285.x
  9. Holinsworth B, Martin JD. 2009. Siderophore production by marine-derived fungi. Biometals 22: 625-632. https://doi.org/10.1007/s10534-009-9239-y
  10. Ismail A. 1988. Siderophore production by Salmonella typhi. Biochem. Biophys. Res. Commun. 150: 18-24. https://doi.org/10.1016/0006-291X(88)90480-9
  11. Khan A, Singh P, Srivastava A. 2018. Synthesis, nature and utility of universal iron chelator - Siderophore: A review. Microbiol. Res. 212-213: 103-111. https://doi.org/10.1016/j.micres.2017.10.012
  12. Braud A, Geoffroy V, Hoegy F, Mislin GL, Schalk IJ. 2010. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ. Microbiol. Rep. 2: 419-425. https://doi.org/10.1111/j.1758-2229.2009.00126.x
  13. Braun V, Hantke K. 2011. Recent insights into iron import by bacteria. Curr. Opin. Chem. Biol. 15: 328-334. https://doi.org/10.1016/j.cbpa.2011.01.005
  14. Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A. 2007. Fungal siderophores: structure, functions and regulation, pp. 1-42. In Varma A, Chincholkar SB (eds.), Microbial Siderophores, Ed. Springer Berlin Heidelberg, Berlin, Germany.
  15. Kragl C, Schrettl M, Abt B, Sarg B, Lindner HH, Haas H. 2007. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot Cell. 6: 1278-1285. https://doi.org/10.1128/EC.00066-07
  16. Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC. 2001. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J. Biol. Chem. 276: 10218-10223. https://doi.org/10.1074/jbc.M010065200
  17. Schrettl M, Ibrahim-Granet O, Droin S, Huerre M, Latge JP, Haas H. 2010. The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes Infect. 12: 1035-1041. https://doi.org/10.1016/j.micinf.2010.07.005
  18. Aguiar M, Orasch T, Shadkchan Y, Caballero P, Pfister J, Sastre-Velasquez LE, et al. 2022. Uptake of the siderophore triacetylfusarinine C, but not fusarinine C, is crucial for virulence of Aspergillus fumigatus. mBio 13: e0219222
  19. Hwang LH, Mayfield JA, Rine J, Sil A. 2008. Histoplasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLoS Pathog. 4: e1000044.
  20. Heymann P, Ernst JF, Winkelmann G. 1999. Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 12: 301-306. https://doi.org/10.1023/A:1009252118050
  21. Heymann P, Ernst JF, Winkelmann G. 2000. A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals 13: 65-72. https://doi.org/10.1023/A:1009250017785
  22. Heymann P, Ernst JF, Winkelmann G. 2000. Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 186: 221-227. https://doi.org/10.1111/j.1574-6968.2000.tb09108.x
  23. Lesuisse E, Simon-Casteras M, Labbe P. 1998. Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology (Reading) 144 (Pt 12): 3455-3462. https://doi.org/10.1099/00221287-144-12-3455
  24. Pelletier B, Beaudoin J, Philpott CC, Labbe S. 2003. Fep1 represses expression of the fission yeast siderophore-iron transport system. Nucleic Acids Res. 31: 4332-4344. https://doi.org/10.1093/nar/gkg647
  25. Hu CJ, Bai C, Zheng XD, Wang YM, Wang Y. 2002. Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J. Biol. Chem. 277: 30598-30605. https://doi.org/10.1074/jbc.M204545200
  26. Kim Y, Yun CW, Philpott CC. 2002. Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae. EMBO J. 21: 3632-3642. https://doi.org/10.1093/emboj/cdf382
  27. Moore RE, Kim Y, Philpott CC. 2003. The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100: 5664-5669. https://doi.org/10.1073/pnas.1030323100
  28. Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touze N. 2008. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 9: 1372-1391. https://doi.org/10.1111/j.1600-0854.2008.00766.x
  29. Jeong MY, Kang CM, Kim JH, Heo DH, Chang M, Baek IJ, et al. 2009. A novel function of Aft1 in regulating ferrioxamine B uptake: Aft1 modulates Arn3 ubiquitination in Saccharomyces cerevisiae. Biochem. J. 422: 181-191. https://doi.org/10.1042/BJ20082399
  30. Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. 2001. A second iron-regulatory system in yeast independent of Aft1p. Proc. Natl. Acad. Sci. USA 98: 14322-14327. https://doi.org/10.1073/pnas.261381198
  31. Martinez-Pastor MT, Perea-Garcia A, Puig S. 2017. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 33: 75.
  32. Courel M, Lallet S, Camadro JM, Blaiseau PL. 2005. Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol. Cell. Biol. 25: 6760-6771. https://doi.org/10.1128/MCB.25.15.6760-6771.2005
  33. Ramos-Alonso L, Romero AM, Martinez-Pastor MT, Puig S. 2020. Iron regulatory mechanisms in Saccharomyces cerevisiae. Front. Microbiol. 11: 582830.
  34. Li L, Bagley D, Ward DM, Kaplan J. 2008. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol. Cell. Biol. 28: 1326-1337. https://doi.org/10.1128/MCB.01219-07
  35. Outten CE, Albetel AN. 2013. Iron sensing and regulation in Saccharomyces cerevisiae: Ironing out the mechanistic details. Curr. Opin. Microbiol. 16: 662-668. https://doi.org/10.1016/j.mib.2013.07.020
  36. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD. 1996. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 15: 3377-3384. https://doi.org/10.1002/j.1460-2075.1996.tb00703.x
  37. Rutherford JC, Jaron S, Winge DR. 2003. Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J. Biol. Chem. 278: 27636-27643. https://doi.org/10.1074/jbc.M300076200
  38. Kang CM, Kang S, Park YS, Yun CW. 2015. Physical interaction between Sit1 and Aft1 upregulates FOB uptake activity by inhibiting protein degradation of Sit1 in Saccharomyces cerevisiae. FEMS Yeast Res. 15: fov080.
  39. Fragiadakis GS, Tzamarias D, Alexandraki D. 2004. Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J. 23: 333-342. https://doi.org/10.1038/sj.emboj.7600043
  40. Crisp RJ, Adkins EM, Kimmel E, Kaplan J. 2006. Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes. EMBO J. 25: 512-521. https://doi.org/10.1038/sj.emboj.7600961
  41. Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, et al. 2001. Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J. Biol. Chem. 276: 49244-49250. https://doi.org/10.1074/jbc.M109220200
  42. Park YS, Jeong HS, Sung HC, Yun CW. 2005. Sed1p interacts with Arn3p physically and mediates ferrioxamine B uptake in Saccharomyces cerevisiae. Curr. Genet. 47: 150-155. https://doi.org/10.1007/s00294-004-0554-0
  43. Vyas A, Freitas AV, Ralston ZA, Tang Z. 2021. Fission Yeast Schizosaccharomyces pombe: A Unicellular "Micromammal" model organism. Curr. Protoc. 1: e151.
  44. Schrettl M, Winkelmann G, Haas H. 2004. Ferrichrome in Schizosaccharomyces pombe--an iron transport and iron storage compound. Biometals. 17: 647-654. https://doi.org/10.1007/s10534-004-1230-z
  45. Haas H. 2003. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol. 62: 316-330. https://doi.org/10.1007/s00253-003-1335-2
  46. Schwecke T, Gottling K, Durek P, Duenas I, Kaufer NF, Zock-Emmenthal S, et al. 2006. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem. 7: 612-622. https://doi.org/10.1002/cbic.200500301
  47. Brault A, Mbuya B, Labbe S. 2022. Sib1, Sib2, and Sib3 proteins are required for ferrichrome-mediated cross-feeding interaction between Schizosaccharomyces pombe and Saccharomyces cerevisiae. Front. Microbiol. 13: 962853.
  48. Pelletier B, Beaudoin J, Philpott CC, Labbe S. 2003. Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophore-iron transport system. Nucleic Acids Res. 31: 4332-4344. https://doi.org/10.1093/nar/gkg647
  49. Plante S, Labbe S. 2019. Spore Germination requires ferrichrome biosynthesis and the siderophore transporter Str1 in Schizosaccharomyces pombe. Genetics 211: 893-911. https://doi.org/10.1534/genetics.118.301843
  50. Yu C, Qi J, Han H, Wang P, Liu C. 2023. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. Mol. Plant Pathol. 24: 495-509. https://doi.org/10.1111/mpp.13307
  51. Budde AD, Leong SA. 1989. Characterization of siderophores from Ustilago maydis. Mycopathologia 108: 125-133. https://doi.org/10.1007/BF00436063
  52. Wang J, Budde AD, Leong SA. 1989. Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N5 -oxygenase gene. J. Bacteriol. 171: 2811-2818. https://doi.org/10.1128/jb.171.5.2811-2818.1989
  53. Mei B, Budde AD, Leong SA. 1993. sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc. Natl. Acad. Sci. USA 90: 903-907. https://doi.org/10.1073/pnas.90.3.903
  54. Yuan WM, Gentil GD, Budde AD, Leong SA. 2001. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J. Bacteriol. 183: 4040-4051. https://doi.org/10.1128/JB.183.13.4040-4051.2001
  55. Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H, et al. 2010. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol. Microbiol. 75: 1260-1271. https://doi.org/10.1111/j.1365-2958.2010.07048.x
  56. Servouse M, Karst F. 1986. Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J. 240: 541-547. https://doi.org/10.1042/bj2400541
  57. Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kamper J, Muller P, et al. 2006. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18: 3332-3345. https://doi.org/10.1105/tpc.106.043588
  58. Antelo L, Hof C, Welzel K, Eisfeld K, Sterner O, Anke H. 2006. Siderophores produced by Magnaporthe grisea in the presence and absence of iron. Z Naturforsch C J. Biosci. 61: 461-464. https://doi.org/10.1515/znc-2006-5-626
  59. Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H. 2007. Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice. Mol. Plant Pathol. 8: 163-172. https://doi.org/10.1111/j.1364-3703.2007.00380.x
  60. Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H. 2009. Siderophore synthesis in is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet. Biol. 46: 321-332. https://doi.org/10.1016/j.fgb.2008.12.004
  61. Kwon-Chung KJ, Sugui JA. 2013. Aspergillus fumigatus--what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 9: e1003743.
  62. Baddley JW, Stephens JM, Ji X, Gao X, Schlamm HT, Tarallo M. 2013. Aspergillosis in Intensive Care Unit (ICU) patients: epidemiology and economic outcomes. BMC Infect. Dis. 13: 29.
  63. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4: 165rv113.
  64. Nilius AM, Farmer SG. 1990. Identification of extracellular siderophores of pathogenic strains of Aspergillus fumigatus. J. Med. Vet. Mycol. 28: 395-403. https://doi.org/10.1080/02681219080000501
  65. Haas H. 2014. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 31: 1266-1276. https://doi.org/10.1039/C4NP00071D
  66. Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, et al. 2007. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3: 1195-1207. https://doi.org/10.1371/journal.ppat.0030128
  67. Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM. 2005. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5 -oxygenase, is required for virulence. Infect. Immun. 73: 5493-5503. https://doi.org/10.1128/IAI.73.9.5493-5503.2005
  68. Blatzer M, Schrettl M, Sarg B, Lindner HH, Pfaller K, Haas H. 2011. SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl. Environ. Microbiol. 77: 4959-4966. https://doi.org/10.1128/AEM.00182-11
  69. Yasmin S, Alcazar-Fuoli L, Grundlinger M, Puempel T, Cairns T, Blatzer M, et al. 2012. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proc. Natl. Acad .Sci. USA 109: E497-504. https://doi.org/10.1073/pnas.1106399108
  70. Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, Jochl C, et al. 2010. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 6: e1001124.
  71. Martinez-Pastor MT, Puig S. 2020. Adaptation to iron deficiency in human pathogenic fungi. Biochim. Biophys. Acta Mol. Cell Res. 1867: 118797.
  72. Haas H, Eisendle M, Turgeon BG. 2008. Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 46: 149-187. https://doi.org/10.1146/annurev.phyto.45.062806.094338
  73. Mulvihill ED, Moloney NM, Owens RA, Dolan SK, Russell L, Doyle S. 2017. Functional Investigation of Iron-Responsive Microsomal Proteins, including MirC, in Aspergillus fumigatus. Front. Microbiol. 8: 418.
  74. Park YS, Kim JY, Yun CW. 2016. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by Aspergillus fumigatus. Biochem. J. 473: 1203-1213. https://doi.org/10.1042/BCJ20160066
  75. Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, et al. 2003. Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem. J. 371: 505-513. https://doi.org/10.1042/bj20021685
  76. Oberegger H, Schoeser M, Zadra I, Abt B, Haas H. 2001. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol. Microbiol. 41: 1077-1089. https://doi.org/10.1046/j.1365-2958.2001.02586.x
  77. Raymond-Bouchard I, Carroll CS, Nesbitt JR, Henry KA, Pinto LJ, Moinzadeh M, et al. 2012. Structural requirements for the activity of the MirB ferrisiderophore transporter of Aspergillus fumigatus. Eukaryot. Cell 11: 1333-1344. https://doi.org/10.1128/EC.00159-12
  78. Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, et al. 2008. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 70: 27-43. https://doi.org/10.1111/j.1365-2958.2008.06376.x
  79. Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. 2002. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect. Immun. 70: 5246-5255. https://doi.org/10.1128/IAI.70.9.5246-5255.2002
  80. Ardon O, Bussey H, Philpott C, Ward DM, Davis-Kaplan S, Verroneau S, et al. 2001. Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J. Biol. Chem. 276: 43049-43055. https://doi.org/10.1074/jbc.M108701200
  81. Lesuisse E, Knight SA, Camadro JM, Dancis A. 2002. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast 19: 329-340. https://doi.org/10.1002/yea.840
  82. Nevitt T, Thiele DJ. 2011. Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog. 7: e1001322.
  83. Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, Dungan J, et al. 2004. Regulatory networks affected by iron availability in. Mol. Microbiol. 53: 1451-1469. https://doi.org/10.1111/j.1365-2958.2004.04214.x
  84. Chen CB, Pande K, French SD, Tuch BB, Noble SM. 2011. An iron homeostasis regulatory circuit with reciprocal roles in commensalism and pathogenesis. Cell Host Microbe 10: 118-135. https://doi.org/10.1016/j.chom.2011.07.005
  85. Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. 2015. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 11: e1005129.
  86. Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J, et al. 2023. Cryptococcal meningitis. Nat. Rev. Dis. Primers 9: 62.
  87. Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ, et al. 2011. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat. Rev. Microbiol. 9: 193-203. https://doi.org/10.1038/nrmicro2522
  88. Xue P, Hu G, Jung WH, Kronstad JW. 2023. Metals and the cell surface of Cryptococcus neoformans. Curr. Opin. Microbiol. 74: 102331.
  89. Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW. 2007. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153: 29-41. https://doi.org/10.1099/mic.0.2006/000927-0
  90. Do E, Cho YJ, Kim D, Kronstad JW, Jung WH. 2020. A transcriptional regulatory map of iron homeostasis reveals a new control circuit for capsule formation in Cryptococcus neoformans. Genetics 215: 1171-1189. https://doi.org/10.1534/genetics.120.303270
  91. Valdez AF, Miranda DZ, Guimaraes AJ, Nimrichter L, Nosanchuk JD. 2022. Pathogenicity & virulence of Histoplasma capsulatum - A multifaceted organism adapted to intracellular environments. Virulence 13: 1900-1919. https://doi.org/10.1080/21505594.2022.2137987
  92. Howard DH, Rafie R, Tiwari A, Faull KF. 2000. Hydroxamate siderophores of Histoplasma capsulatum. Infect. Immun. 68: 2338-2343. https://doi.org/10.1128/IAI.68.4.2338-2343.2000
  93. Hilty J, George Smulian A, Newman SL. 2011. Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages. Med. Mycol. 49: 633-642. https://doi.org/10.3109/13693786.2011.558930
  94. Hwang LH, Seth E, Gilmore SA, Sil A. 2012. SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryot. Cell 11: 16-25. https://doi.org/10.1128/EC.05274-11
  95. Chao LY, Marletta MA, Rine J. 2008. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum. Biochemistry 47: 7274-7283. https://doi.org/10.1021/bi800066s
  96. Olivier LM, Krisans SK. 2000. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. Biochim. Biophys. Acta 1529: 89-102. https://doi.org/10.1016/S1388-1981(00)00139-6
  97. Brechting PJ, Shah C, Rakotondraibe L, Shen Q, Rappleye CA. 2023. Histoplasma capsulatum requires peroxisomes for multiple virulence functions including siderophore biosynthesis. mBio 14: e0328422.
  98. Mular A, Shanzer A, Kozlowski H, Hubmann I, Misslinger M, Krzywik J, et al. 2021. Cyclic analogs of desferrioxamine E siderophore for 68Ga nuclear imaging: coordination chemistry and biological activity in Staphylococcus aureus. Inorg. Chem. 60: 17846-17857. https://doi.org/10.1021/acs.inorgchem.1c02453
  99. Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. 2023. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem. 67: 829-842. https://doi.org/10.1042/EBC20220252
  100. Peukert C, Popat Gholap S, Green O, Pinkert L, van den Heuvel J, van Ham M, et al. 2022. Enzyme-activated, chemiluminescent siderophore-dioxetane probes enable the selective and highly sensitive detection of bacterial pathogens. Angew. Chem Int. Ed Engl. 61: e202201423.
  101. Franken AC, Lokman BC, Ram AF, Punt PJ, van den Hondel CA, de Weert S. 2011. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl. Microbiol. Biotechnol. 91: 447-460. https://doi.org/10.1007/s00253-011-3391-3
  102. Munawar A, Marshall JW, Cox RJ, Bailey AM, Lazarus CM. 2013. Isolation and characterisation of a ferrirhodin synthetase gene from the sugarcane pathogen Fusarium sacchari. Chembiochem. 14: 388-394. https://doi.org/10.1002/cbic.201200587
  103. Suzuki S, Fukuda K, Irie M, Hata Y. 2007. Iron chelated cyclic peptide, ferrichrysin, for oral treatment of iron deficiency: solution properties and efficacy in anemic rats. Int. J. Vitam. Nutr. Res. 77: 13-21. https://doi.org/10.1024/0300-9831.77.1.13
  104. Eisendle M, Schrettl M, Kragl C, Muller D, Illmer P, Haas H. 2006. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot. Cell 5: 1596-1603. https://doi.org/10.1128/EC.00057-06
  105. Yamamoto S, Okujo N, Yoshida T, Matsuura S, Shinoda S. 1994. Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus. J. Biochem. 115: 868-874. https://doi.org/10.1093/oxfordjournals.jbchem.a124432
  106. Konetschny-Rapp S, Jung G, Meiwes J, Zahner H. 1990. Staphyloferrin A: a structurally new siderophore from staphylococci. Eur. J. Biochem. 191: 65-74. https://doi.org/10.1111/j.1432-1033.1990.tb19094.x
  107. Budzikiewicz H. 2010. Microbial siderophores. Fortschr. Chem. Org. Naturst. 92: 1-75. https://doi.org/10.1007/978-3-211-99661-4_1
  108. Pollack JR, Neilands JB. 1970. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem. Biophys. Res. Commun. 38: 989-992. https://doi.org/10.1016/0006-291X(70)90819-3
  109. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, et al. 2004. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17: 471-481. https://doi.org/10.1023/B:BIOM.0000029432.69418.6a
  110. Persmark M, Expert D, Neilands JB. 1989. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. J. Biol. Chem. 264: 3187-3193. https://doi.org/10.1016/S0021-9258(18)94049-4
  111. Wake A, Misawa M, Matsui A. 1975. Siderochrome production by Yersinia pestis and its relation to virulence. Infect. Immun. 12: 1211-1213. https://doi.org/10.1128/iai.12.5.1211-1213.1975
  112. Cox CD, Rinehart KL, Jr., Moore ML, Cook JC, Jr. 1981. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 78: 4256-4260. https://doi.org/10.1073/pnas.78.7.4256
  113. Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA. 1983. The structure of pyoverdine Pa, the siderophore of Pseudomonas aeruginosa. Tetrahedron. Lett. 24: 4877-4880. https://doi.org/10.1016/S0040-4039(00)94031-0
  114. Francis J, Madinaveitia J, Macturk HM, Snow GA. 1949. Isolation from acid-fast bacteria of a growth-factor for Mycobacterium johnei and of a precursor of phthiocol. Nature 163: 365-366. https://doi.org/10.1038/163365b0
  115. Gibson F, Magrath DI. 1969. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim. Biophys. Acta 192: 175-184. https://doi.org/10.1016/0304-4165(69)90353-5
  116. Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, et al. 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1). J. Bacteriol. 167: 57-65. https://doi.org/10.1128/jb.167.1.57-65.1986
  117. Lesuisse E, Simon-Casteras M, Labbe P. 1998. Siderophore-mediated iron uptake in: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144: 3455-3462. https://doi.org/10.1099/00221287-144-12-3455
  118. Kim JH, Kim HW, Heo DH, Chang M, Baek IJ, Yun CW. 2009. FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F. graminearum. Curr. Genet. 55: 593-600. https://doi.org/10.1007/s00294-009-0272-8
  119. Park M, Cho YJ, Lee YW, Jung WH. 2017. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses 60: 188-197. https://doi.org/10.1111/myc.12586
  120. Cho YJ, Park M, Jung WH. 2019. Resequencing the genome of Malassezia restricta strain KCTC 27527. Microbiol. Resour. Announc. 8:e00213-19. https://doi.org/10.1128/MRA.00213-19
  121. Srivastava VK, Suneetha KJ, Kaur R. 2014. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata. Biochem. J. 463: 103-114. https://doi.org/10.1042/BJ20140598
  122. Wortman JR, Gilsenan JM, Joardar V, Deegan J, Clutterbuck J, Andersen MR, et al. 2009. The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet. Biol. 46 Suppl 1: S2-13. https://doi.org/10.1016/j.fgb.2008.12.003
  123. Attarian R, Hu G, Sanchez-Leon E, Caza M, Croll D, Do E, et al. 2018. The monothiol glutaredoxin Grx4 regulates iron homeostasis and virulence in Cryptococcus neoformans. mBio 9: e02377-18.