DOI QR코드

DOI QR Code

Stochastic failure analysis of [0/θ]s laminated composite plate containing edge crack and voids using XFEM

  • Ashok B. Magar (Department of Mechanical Engineering, N.K.Orchid College of Engineering and Technology) ;
  • Achchhe Lal (Department of Mechanical Engineering, S. V. National Institute of Technology)
  • 투고 : 2023.06.30
  • 심사 : 2024.02.13
  • 발행 : 2024.08.25

초록

Due to higher strength-to-weight ratio of composite laminates, they find uses in many weight-sensitive applications like aerospace, automobile and marine structures. From a reliability point of view, accurate prediction of failure of these structures is important. Due to the complexities in the manufacturing processes of composite laminates, there is a variation in the material properties and geometric parameters. Hence stochastic aspects are important while designing the composite laminates. Many existing works of composite laminate failure analysis are based on the deterministic approach but it is important to consider the randomness in the material properties, geometry and loading to predict accurate failure loads. In this paper the statistics of the ultimate failure load of the [0/θ]s laminated composite plate (LCP) containing the edge crack and voids subjected to the tensile loading are presented in terms of the mean and coefficient of variance (COV). The objective is to better the efficacy of laminate failure by predicting the statistics of the ultimate failure load of LCP with random material, geometric and loading parameters. The stochastic analysis is done by using the extended finite element method (XFEM) combined with the second-order perturbation technique (SOPT). The ultimate failure load of the LCP is obtained by ply-by-ply failure analysis using the ply discount method combined with the Tsai-Wu failure criterion. The aim is to know the effect of the stacking sequence, crack length, crack angle, location of voids and number of voids on the mean and corresponding COV of the ultimate failure load of LCP is investigated. The results of the ultimate failure load obtained by the present method are in good agreement with the existing experimental and numerical results. It is observed that [0/θ]s LCPs are very sensitive to the randomness in the crack length, applied load, transverse tensile strength of the laminate and modulus of elasticity of the material, so precise control of these parameters is important. The novelty of the present study is, the stochastic implementation in XFEM for the failure prediction of LCPs containing crack and voids.

키워드

참고문헌

  1. Abdullah, N.A., Curiel-Sosa, J.L., Taylor, Z.A., Tafazzolimoghaddam, B., Vicente, J.L.M. and Zhang, C. (2017), "Transversal crack and delamination of laminates using XFEM", Compos. Struct., 173, 78-85. https://doi.org/10.1016/j.compstruct.2017.04.011.
  2. Asadpoure, A. and Mohammadi, S. (2007), "Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method", Int. J. Numer. Method. Eng., 69(10), 2150-2172. https://doi.org/10.1002/nme.1839.
  3. Asadpoure, A., Mohammadi, S. and Vafai, A. (2006), "Crack analysis in orthotropic media using the extended finite element method", Thin Wall. Struct., 44(9), 1031-1038. https://doi.org/10.1016/j.tws.2006.07.007.
  4. Asadpoure, A., Mohammadi, S. and Vafai, A. (2006), "Modeling crack in orthotropic media using a coupled finite element and partition of unity methods", Finite Elem. Anal. Des., 42(13), 1165-1175. https://doi.org/10.1016/j.finel.2006.05.001.
  5. Bayesteh, H. and Mohammadi, S. (2013), "XFEM fracture analysis of orthotropic functionally graded materials", Compos. Part B: Eng., 44(1), 8-25. https://doi:10.1016/j.compositesb.2012.07.055.
  6. Benzaama, A., Mokhtari, M., Benzaama, H., Gouasmi, S. and Tamine, T. (2018), "Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load", Adv. Aircr. Spacecr. Sci., 5(3), 129-139. https://doi.org/10.12989/aas.2018.5.1.129.
  7. Bhardwaj, G., Singh, I.V. and Mishra, B.K. (2015), "Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA", Comput. Method. Appl. Mech. Eng., 284, 186-229. https://doi.org/10.1016/j.cma.2014.08.015.
  8. Chen, X., Gu, J., Yu, T., Qiu, L. and Bui, T.Q. (2019), "Numerical simulation of arbitrary holes in orthotropic media by an efficient computational method based on adaptive XIGA", Compos. Struct., 229,111387. https://doi:10.1016/j.compstruct.2019.111387.
  9. Dongen, B.V., Oostrum, A.V. and Zarouchas, D. (2017), "A blended continuum damage and fracture mechanics method for progressive damage analysis of composite structures using XFEM", Compos. Struct., 184, 512-522. https://doi.org/10.1016/j.compstruct.2017.10.007.
  10. Duarte, A.P.C., Saez, A.D. and Silvestre N. (2017), "Comparative study between XFEM and Hashin damage criterion applied to failure of composites", Thin Wall. Struct., 115, 277-288. https://doi.org/10.1016/j.tws.2017.02.020.
  11. Ebrahimi, S.H., Mohammadi, S. and Asadpoure, A. (2008), "An extended finite element (XFEM) approach for crack analysis in composite media", Int. J. Civil Eng., 6(3), 198-207.
  12. Ezzine, M.C., Amiri, A., Tarfaoui, M. and Madani, K. (2018), "Damage of bonded, riveted and hybrid (bonded/riveted) joints, experimental and numerical study using CZM and XFEM methods", Adv. Aircr. Spacecr. Sci., 5(5), 129-139. https://doi.org/10.12989/aas.2018.5.5.595.
  13. Gu, J., Yu, T., Van, L., Tanaka, S., Yuan, H. and Bui, T.Q. (2020), "Crack growth adaptive XIGA simulation in isotropic and orthotropic materials", Comput. Method. Appl. Mech. Eng., 365, 113016. https://doi.org/10.1016/j.cma.2020.113016.
  14. Haldar, A. and Mahadevan, S. (2000), Probability, Reliability, and Statistical Methods in Engineering Design, John Wiley, New York, NY, USA.
  15. Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract. Mech., 206, 215-227. https://doi.org/10.1007/s10704-017-0210-6.
  16. Hulton, A.W. and Cavallaro, P.V. (2016), "Comparing computational and experimental failure of composites using XFEM", ASME International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, November.
  17. Jiang, S., Du, C., Gu, C. and Chen, X. (2014), "XFEM analysis of the effects of voids, inclusions and other cracks on the dynamic stress intensity factor of a major crack", Fatig. Fract. Eng. Mater. Struct., 37(8), 866-882. https://doi.org/10.1111/ffe.12150.
  18. Jones, R. (2002), Mechanics of Composite Material, McGraw-Hill, New York, NY, USA.
  19. Kaman, O.M. (2011), "Effect of fiber orientation on fracture toughness of laminated composite plates [0/θ]s", Eng. Fract. Mech., 78(13), 2521-2534. https://doi.org/10.1016/j.engfracmech.2011.06.005.
  20. Khasin, V.L. (2014), "Stochastic model of crack propagation in brittle heterogeneous materials", Int. J. Eng. Sci., 82, 101-123. https://doi.org/10.1016/j.ijengsci.2014.04.002.
  21. Kim. J.H. and Paulino, G.H. (2002), "Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method", Eng. Fract. Mech., 69(14-16), 1557-1586. https://doi.org/10.1016/S0013-7944(02)00057-7.
  22. Lei, J., Wang, Y.W. and Gross, D. (2005), "Analysis of dynamic interaction between an inclusion and a nearby moving crack by BEM", Eng. Anal. Bound. Elem., 29(8), 802-813. https://doi.org/10.1016/j.enganabound.2005.04.002.
  23. Liu, D., Cao, D., Hu, H., Zhong, Y. and Li, S. (2021), "Numerical study on failure behaviour of open-hole composite laminates based on LaRC criterion and extended finite element method", J. Mech. Sci. Technol., 35(3), 1037-1047. https://doi.org/10.1007/s12206-021-0217-9.
  24. Lua, Y.J., Liu, W.K. and Belytschko, T. (1993), "Curvilinear fatigue crack reliability analysis by stochastic boundary element method", Numer. Meth. Eng., 36(22), 3841-3858. https://doi.org/10.1002/nme.1620362206.
  25. Ma, Z., Chen, J., Yang, Q., Li, Z. and Su, X. (2021), "Progressive fracture analysis of the open-hole composite laminates: Experiment and simulation", Compos. Struct., 262, 113628. https://doi.org/10.1016/j.compstruct.2021.113628.
  26. Martinez, E.R., Chakraborty, S. and Tesfamariam, S. (2021), "Machine learning assisted stochastic-XFEM for stochastic crack propagation and reliability analysis", Theoret. Appl. Fract. Mech., 112, 102882. https://doi.org/10.1016/j.tafmec.2020.102882.
  27. Mohammadi, S. (2008), Extended Finite Element Method for Fracture Analysis of Structures, Blackwell Publishing, Oxford, UK.
  28. Motamedi, D., Milani, A.S., Komeili, M., Bureau, M.N., Thibault, F. and Trudel, B.D. (2014), "A stochastic XFEM model to study delamination in PPS/Glass UD composites: Effect of uncertain fracture properties", Appl. Compos. Mater., 21, 341-358. https://doi.org/10.1007/s10443-013-9342-7.
  29. Natarajan, S., Kerfriden, P., Mahapatra, D.R. and Bordas, S.P.A. (2014), "Numerical analysis of the inclusion-crack interaction by the extended finite element method", Int. J. Compos. Method. Eng. Sci. Mech., 15(1), 26-32. https://doi.org/10.1080/15502287.2013.833999.
  30. Nguyen, M.N., Nguyen, N.T., Truong, T.T. and Bui, T.Q. (2019), "Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive interpolation element (XCQ4)", Eng. Fract. Mech., 206, 89-113. https://doi.org/10.1016/j.engfracmech.2018.11.036.
  31. Patel, A., Sato, E., Shichijo, N., Hirata, I. and Takagi, T. (2022), "A mixed XFEM and CZM approach for predicting progressive failure in advanced SiC/SiC CMC component", Compos. Part C, 9, 100325. https://doi.org/10.1016/j.jcomc.2022.100325.
  32. Patil, R.U., Mishra, B.K. and Singh, I.V. (2017), "A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials", Int. J. Mech. Sci., 122, 277-287. https://doi.org/10.1016/j.ijmecsci.2017.01.028.
  33. Qin, Q.H. and Lu, M. (2000), "BEM for crack-inclusion problems of plane thermopiezoelectric solids", Int. J. Numer. Method. Eng., 48, 1071-1088. https://doi.org/10.1002/(SICI)1097-0207(20000710)48:7%3C1071::AID-ME917%3E3.0.CO;2-W.
  34. Sharma, K., Singh, I.V., Mishra, B.K. and Shedbale, A.S. (2013), "The effect of inhomogeneities on an edge crack: A numerical study using XFEM", Int. J. Compos. Method. Eng. Sci. Mech., 14(6), 505-523. https://doi.org/10.1080/15502287.2013.820227.
  35. Shedbale, A.S., Singh, I.V. and Mishra, B.K. (2013), "Nonlinear simulation of an embedded crack in the presence of holes and inclusions by XFEM", Proc. Eng., 64, 642-651. https://doi.org/10.1016/j.proeng.2013.09.139.
  36. Shen, X., Hu, H., Wang, Z., Chen, X. and Du, C. (2021), "Stochastic fracture analysis using scaled boundary finite element methods accelerated by proper orthogonal decomposition and radial basis functions", Geofluids, 2021(1), 9181415. https://doi.org/10.1155/2021/9181415.
  37. Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatig., 36(1), 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010.
  38. Singh, S. and Kumar, A. (1998), "Postbuckling response and failure of symmetric laminates under in-plane shear", Compos. Sci. Technol., 58(12), 1949-1960. https://doi.org/10.1016/S0266-3538(98)00032-3.
  39. Sukumar, N., Chopp, D.L., Moes, N. and Belytschk, T. (2001), "Modeling holes and inclusions by level sets in the extended finite-element method", Compos. Method. Appl. Mech. Eng., 190(46-47), 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8.
  40. Swati, R.F., Hua, W.L., Elahi, H. and Khan, A.A. (2018), "XFEM damage analysis of carbon fiber reinforced composites and crack propagation in mixed-mode and implementation of the method using ABAQUS", Int. J. Mater. Mech. Manuf., 6(4), 286-290. https://doi.org/10.18178/ijmmm.2018.6.4.393.
  41. Turan, K., Gur, M. and Kaman, M.O. (2014), "Progressive failure analysis of pin-loaded unidirectional carbon-epoxy laminated composites", Mech. Adv. Matrt. Struct., 21(2), 98-106. https://doi.org/10.1080/15376494.2012.677109.
  42. Wang, X.F. and Hasebe, N. (2000), "Bending of a thin plate containing a rigid inclusion and a crack", Eng. Anal. Bound. Elem., 24(2), 145-153. https://doi.org/10.1016/S0955-7997(99)00062-4.
  43. Yu, T. and Bui, T.Q. (2018), "Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement", Compos. Struct., 196, 112-133. https://doi.org/10.1016/j.compstruc.2017.11.007.