참고문헌
- Abdullah, N.A., Curiel-Sosa, J.L., Taylor, Z.A., Tafazzolimoghaddam, B., Vicente, J.L.M. and Zhang, C. (2017), "Transversal crack and delamination of laminates using XFEM", Compos. Struct., 173, 78-85. https://doi.org/10.1016/j.compstruct.2017.04.011.
- Asadpoure, A. and Mohammadi, S. (2007), "Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method", Int. J. Numer. Method. Eng., 69(10), 2150-2172. https://doi.org/10.1002/nme.1839.
- Asadpoure, A., Mohammadi, S. and Vafai, A. (2006), "Crack analysis in orthotropic media using the extended finite element method", Thin Wall. Struct., 44(9), 1031-1038. https://doi.org/10.1016/j.tws.2006.07.007.
- Asadpoure, A., Mohammadi, S. and Vafai, A. (2006), "Modeling crack in orthotropic media using a coupled finite element and partition of unity methods", Finite Elem. Anal. Des., 42(13), 1165-1175. https://doi.org/10.1016/j.finel.2006.05.001.
- Bayesteh, H. and Mohammadi, S. (2013), "XFEM fracture analysis of orthotropic functionally graded materials", Compos. Part B: Eng., 44(1), 8-25. https://doi:10.1016/j.compositesb.2012.07.055.
- Benzaama, A., Mokhtari, M., Benzaama, H., Gouasmi, S. and Tamine, T. (2018), "Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load", Adv. Aircr. Spacecr. Sci., 5(3), 129-139. https://doi.org/10.12989/aas.2018.5.1.129.
- Bhardwaj, G., Singh, I.V. and Mishra, B.K. (2015), "Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA", Comput. Method. Appl. Mech. Eng., 284, 186-229. https://doi.org/10.1016/j.cma.2014.08.015.
- Chen, X., Gu, J., Yu, T., Qiu, L. and Bui, T.Q. (2019), "Numerical simulation of arbitrary holes in orthotropic media by an efficient computational method based on adaptive XIGA", Compos. Struct., 229,111387. https://doi:10.1016/j.compstruct.2019.111387.
- Dongen, B.V., Oostrum, A.V. and Zarouchas, D. (2017), "A blended continuum damage and fracture mechanics method for progressive damage analysis of composite structures using XFEM", Compos. Struct., 184, 512-522. https://doi.org/10.1016/j.compstruct.2017.10.007.
- Duarte, A.P.C., Saez, A.D. and Silvestre N. (2017), "Comparative study between XFEM and Hashin damage criterion applied to failure of composites", Thin Wall. Struct., 115, 277-288. https://doi.org/10.1016/j.tws.2017.02.020.
- Ebrahimi, S.H., Mohammadi, S. and Asadpoure, A. (2008), "An extended finite element (XFEM) approach for crack analysis in composite media", Int. J. Civil Eng., 6(3), 198-207.
- Ezzine, M.C., Amiri, A., Tarfaoui, M. and Madani, K. (2018), "Damage of bonded, riveted and hybrid (bonded/riveted) joints, experimental and numerical study using CZM and XFEM methods", Adv. Aircr. Spacecr. Sci., 5(5), 129-139. https://doi.org/10.12989/aas.2018.5.5.595.
- Gu, J., Yu, T., Van, L., Tanaka, S., Yuan, H. and Bui, T.Q. (2020), "Crack growth adaptive XIGA simulation in isotropic and orthotropic materials", Comput. Method. Appl. Mech. Eng., 365, 113016. https://doi.org/10.1016/j.cma.2020.113016.
- Haldar, A. and Mahadevan, S. (2000), Probability, Reliability, and Statistical Methods in Engineering Design, John Wiley, New York, NY, USA.
- Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract. Mech., 206, 215-227. https://doi.org/10.1007/s10704-017-0210-6.
- Hulton, A.W. and Cavallaro, P.V. (2016), "Comparing computational and experimental failure of composites using XFEM", ASME International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, November.
- Jiang, S., Du, C., Gu, C. and Chen, X. (2014), "XFEM analysis of the effects of voids, inclusions and other cracks on the dynamic stress intensity factor of a major crack", Fatig. Fract. Eng. Mater. Struct., 37(8), 866-882. https://doi.org/10.1111/ffe.12150.
- Jones, R. (2002), Mechanics of Composite Material, McGraw-Hill, New York, NY, USA.
- Kaman, O.M. (2011), "Effect of fiber orientation on fracture toughness of laminated composite plates [0/θ]s", Eng. Fract. Mech., 78(13), 2521-2534. https://doi.org/10.1016/j.engfracmech.2011.06.005.
- Khasin, V.L. (2014), "Stochastic model of crack propagation in brittle heterogeneous materials", Int. J. Eng. Sci., 82, 101-123. https://doi.org/10.1016/j.ijengsci.2014.04.002.
- Kim. J.H. and Paulino, G.H. (2002), "Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method", Eng. Fract. Mech., 69(14-16), 1557-1586. https://doi.org/10.1016/S0013-7944(02)00057-7.
- Lei, J., Wang, Y.W. and Gross, D. (2005), "Analysis of dynamic interaction between an inclusion and a nearby moving crack by BEM", Eng. Anal. Bound. Elem., 29(8), 802-813. https://doi.org/10.1016/j.enganabound.2005.04.002.
- Liu, D., Cao, D., Hu, H., Zhong, Y. and Li, S. (2021), "Numerical study on failure behaviour of open-hole composite laminates based on LaRC criterion and extended finite element method", J. Mech. Sci. Technol., 35(3), 1037-1047. https://doi.org/10.1007/s12206-021-0217-9.
- Lua, Y.J., Liu, W.K. and Belytschko, T. (1993), "Curvilinear fatigue crack reliability analysis by stochastic boundary element method", Numer. Meth. Eng., 36(22), 3841-3858. https://doi.org/10.1002/nme.1620362206.
- Ma, Z., Chen, J., Yang, Q., Li, Z. and Su, X. (2021), "Progressive fracture analysis of the open-hole composite laminates: Experiment and simulation", Compos. Struct., 262, 113628. https://doi.org/10.1016/j.compstruct.2021.113628.
- Martinez, E.R., Chakraborty, S. and Tesfamariam, S. (2021), "Machine learning assisted stochastic-XFEM for stochastic crack propagation and reliability analysis", Theoret. Appl. Fract. Mech., 112, 102882. https://doi.org/10.1016/j.tafmec.2020.102882.
- Mohammadi, S. (2008), Extended Finite Element Method for Fracture Analysis of Structures, Blackwell Publishing, Oxford, UK.
- Motamedi, D., Milani, A.S., Komeili, M., Bureau, M.N., Thibault, F. and Trudel, B.D. (2014), "A stochastic XFEM model to study delamination in PPS/Glass UD composites: Effect of uncertain fracture properties", Appl. Compos. Mater., 21, 341-358. https://doi.org/10.1007/s10443-013-9342-7.
- Natarajan, S., Kerfriden, P., Mahapatra, D.R. and Bordas, S.P.A. (2014), "Numerical analysis of the inclusion-crack interaction by the extended finite element method", Int. J. Compos. Method. Eng. Sci. Mech., 15(1), 26-32. https://doi.org/10.1080/15502287.2013.833999.
- Nguyen, M.N., Nguyen, N.T., Truong, T.T. and Bui, T.Q. (2019), "Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive interpolation element (XCQ4)", Eng. Fract. Mech., 206, 89-113. https://doi.org/10.1016/j.engfracmech.2018.11.036.
- Patel, A., Sato, E., Shichijo, N., Hirata, I. and Takagi, T. (2022), "A mixed XFEM and CZM approach for predicting progressive failure in advanced SiC/SiC CMC component", Compos. Part C, 9, 100325. https://doi.org/10.1016/j.jcomc.2022.100325.
- Patil, R.U., Mishra, B.K. and Singh, I.V. (2017), "A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials", Int. J. Mech. Sci., 122, 277-287. https://doi.org/10.1016/j.ijmecsci.2017.01.028.
- Qin, Q.H. and Lu, M. (2000), "BEM for crack-inclusion problems of plane thermopiezoelectric solids", Int. J. Numer. Method. Eng., 48, 1071-1088. https://doi.org/10.1002/(SICI)1097-0207(20000710)48:7%3C1071::AID-ME917%3E3.0.CO;2-W.
- Sharma, K., Singh, I.V., Mishra, B.K. and Shedbale, A.S. (2013), "The effect of inhomogeneities on an edge crack: A numerical study using XFEM", Int. J. Compos. Method. Eng. Sci. Mech., 14(6), 505-523. https://doi.org/10.1080/15502287.2013.820227.
- Shedbale, A.S., Singh, I.V. and Mishra, B.K. (2013), "Nonlinear simulation of an embedded crack in the presence of holes and inclusions by XFEM", Proc. Eng., 64, 642-651. https://doi.org/10.1016/j.proeng.2013.09.139.
- Shen, X., Hu, H., Wang, Z., Chen, X. and Du, C. (2021), "Stochastic fracture analysis using scaled boundary finite element methods accelerated by proper orthogonal decomposition and radial basis functions", Geofluids, 2021(1), 9181415. https://doi.org/10.1155/2021/9181415.
- Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatig., 36(1), 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010.
- Singh, S. and Kumar, A. (1998), "Postbuckling response and failure of symmetric laminates under in-plane shear", Compos. Sci. Technol., 58(12), 1949-1960. https://doi.org/10.1016/S0266-3538(98)00032-3.
- Sukumar, N., Chopp, D.L., Moes, N. and Belytschk, T. (2001), "Modeling holes and inclusions by level sets in the extended finite-element method", Compos. Method. Appl. Mech. Eng., 190(46-47), 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8.
- Swati, R.F., Hua, W.L., Elahi, H. and Khan, A.A. (2018), "XFEM damage analysis of carbon fiber reinforced composites and crack propagation in mixed-mode and implementation of the method using ABAQUS", Int. J. Mater. Mech. Manuf., 6(4), 286-290. https://doi.org/10.18178/ijmmm.2018.6.4.393.
- Turan, K., Gur, M. and Kaman, M.O. (2014), "Progressive failure analysis of pin-loaded unidirectional carbon-epoxy laminated composites", Mech. Adv. Matrt. Struct., 21(2), 98-106. https://doi.org/10.1080/15376494.2012.677109.
- Wang, X.F. and Hasebe, N. (2000), "Bending of a thin plate containing a rigid inclusion and a crack", Eng. Anal. Bound. Elem., 24(2), 145-153. https://doi.org/10.1016/S0955-7997(99)00062-4.
- Yu, T. and Bui, T.Q. (2018), "Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement", Compos. Struct., 196, 112-133. https://doi.org/10.1016/j.compstruc.2017.11.007.