DOI QR코드

DOI QR Code

A comparative study of pine rosin and glutaraldehyde cross linker on mechanical properties of jute corn starch based biocomposite

  • Karishma M. Sakhare (Textile Manufactures Department, Veermata Jijabai Technological Institute) ;
  • Suraj R. Bamane (Textile Manufactures Department, Veermata Jijabai Technological Institute) ;
  • Shashikant P. Borkar (Textile Manufactures Department, Veermata Jijabai Technological Institute)
  • Received : 2022.04.11
  • Accepted : 2024.01.24
  • Published : 2024.08.25

Abstract

Biocompositesmade up of starch and jute fibres are biodegradable and environmentally friendly materials for sustainable development. In this study, corn starch has been separately modified with 15% pine rosin and 40% glutaraldehyde, and 30% glycerol is used as a plasticizer. The composites have been prepared for three different volume proportions of matrix and jute fibre such as 60:40, 70:30 and 80:20 by using a hot compression moulding machine. The effects of pine rosin and glutaraldehyde on mechanical properties have been studied. Pine rosin modified starch jute composites have shown higher tensile and flexural properties as compared with glutaraldehyde modified starch jute composite. The highest tensile strength and modulus are found at 60:40 matrix and jute fibre volume proportion of pine rosin modified starch jute composite which are 13.97 MPa and 782.94 MPa respectively. Similar trends were found in flexural strength and modulus for pine rosin modified starch jute composite having matrix to jute fibre proportion 60:40 which are 29.18 MPa and 1107.76 MPa respectively. But, in case of impact strength, glutaraldehyde modified starch jute composite having matrix to jute fibre proportion 80:20 have shown highest impact strength that is 59.05 KJ/m2. Starch-jute composite with glutaraldehyde shows 33% more water absorbency as compared to composite having pine rosin as cross linker. Highest FTIR graph indicates that the number of -OH group is much lower in case of pine rosin modified starch than glutatraldehyde modified starch which indicates that bonds formed by pine rosin are much stronger than the bonds formed by glutaraldehyde. The surface morphology of the composite was influenced by pine rosin and glutaraldehyde which is shown in the SEM image.

Keywords

Acknowledgement

Authors specially acknowledge the supports of Department of Fibre Science and Textile Processing of Institute of Chemical Technology Mumbai and would also like to acknowledge the Department of Production Engineering, Veermata Jijabai Technological Institute Mumbai for providing their testing facilities.

References

  1. Alam, M., Maniruzzaman, M. and Morshed, M. (2014), "Application and advances in microprocessing of natural fiber (jute)-based composites", Comprehens. Mater. Pr., 2014, 243-260. https://doi.org/10.1016/B978-0-08-096532-1.00714-7.
  2. Aldas, M., Pavon, C., Lopez-Martinez, J. and Arrieta, M. (2020), "Pine resin derivatives as sustainable additives to improve the mechanical and thermal properties of injected moulded thermoplastic starch", Appl. Sci., 10(7), 2561. https://doi.org/10.3390/app10072561.
  3. Aliyaa, B., Sunooj, K. and Lackner, M. (2021), "Biopolymer composites: A review", Int. J. Biobased Plast., 3(1), 40-84. https://doi.org/10.1080/24759651.2021.1881214.
  4. Aly-Hassan, M. (2015), Multifunctionality of Polymer Composites, Elsevier, Amsterdam, Netherlands.
  5. Amnuav, W., Katavut, P., Supranee, K. and Pichan, S. (2011), "Green composite of thermoplastic corn starch and recycled paper cellulose fibres", Songklanakarin J. Sci. Technol., 33, 461-467.
  6. ASTM Standard D 256-10 (2010), Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, USA.
  7. ASTM Standard D 570-98 (2010), Standard Test Method for Water Absorption of Plastic, ASTM International, West Conshohocken, PA, USA.
  8. ASTM Standard D 638-03 (2003), Standard Test Method for Tensile Properties of Plastic, ASTM International, West Conshohocken, PA, USA.
  9. ASTM Standard D 7390-07 (2007), Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastic and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA.
  10. Baishya, P. and Maji, T. (2014), "Studies on effects of different cross-linkers on the properties of starch- based wood composites", ACS Sustainab. Chem. Eng., 2(7), 1760-1768. https://doi.org/10.1021/sc5002325.
  11. Biswas, S., Ahsan, Q., Cenna, A., Hasan, M. and Hassan, A. (2013), "Physical and mechanical properties of jute, bamboo and coir natural fiber", Fib. Polym., 14(10), 1762-1767. https://doi.org/10.1007/s12221-013-1762-3.
  12. Chand, N. and Fahim, M. (2008), Tribology of Natural Fiber Polymer Composites, Woodhead Publishing, Cambridge, UK.
  13. Dicker, M., Duckworth, P., Baker, A., Francois, G., Hazzard, M. and Weaver, P. (2014), "Green composites: A review of material attributes and complementary applications", Compos. Part A: Appl. Sci. Manuf., 56, 280-289. https://doi.org/10.1016/j.compositesa.2013.10.014.
  14. Gupta, M., Srivastava, R. and Bisaria, H. (2015), "Potential of jute fibre reinforced polymer composites: A review", Int. J. Fiber Textile Res., 5, 30-38.
  15. Ibrahim, M., Sapuan, S., Zainudin, E., Zuhri, M. and Edhirej, A. (2019), "Corn (maize) - its fibers, polymers, composites, and applications", Biodegrad. Compos. Mater. Manuf. Eng., 10, 14-35. https://doi.org/10.1515/9783110603699-002.
  16. Iman, M. and Maji, T. (2012), "Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites", Carbohydr. Polym., 89(1), 290-297. https://doi.org/10.1016/j.carbpol.2012.03.012.
  17. Kandpal, B., Chaurasia, R. and Khurana V. (2015), "Recent advances in green composites - A review", Int. J. Technol. Res. Eng. (IJTRE), 2(7), 742-747.
  18. Kaur, L., Singh, J. and Liu, Q. (2007), "Starch - A potential biomaterial for biomedical applications", Nanomaterials and Nanosystems for Biomedical Applications, Springer Science+Business Media, Dordrecht, Netherlands.
  19. Mahendra, V. (2015), "Fabrication of biocompatible hydrogels from pine resin", Winter Solstice, 5, 1-5.
  20. Mohammed, L., Ansari, M., Pua, G., Jawaid, M. and Islam, M. (2015), "A review on natural fiber reinforced polymer composite and its applications", Int. J. Polym. Sci., 2015(1), 1-15. https://doi.org/10.1155/2015/243947.
  21. Popescu, E., Stoica, A. and Elena, B. (2010), "Morphological and thermal properties of maize starch", Annal. Food Sci. Technol., 11(2), 35-39.
  22. Pradeep, Y. (2018), "Synthesis, fabrication and characterization of jute fibre reinforced laminar composites", Int. J. Mech. Eng. Technol. (IJMET), 9, 722-731.
  23. Rahman, M., Huque, M. and Islam, M. (2008), "Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites part A", Appl. Sci. Manuf., 39, 1739-1747. https://doi.org/10.1016/j.compositesa.2008.08.002.
  24. Ribeiro, R., Marques, A. and Alves, J. (2018), "Sustainable composites based on pine resin and flax fibre", Advances in Natural Fibre Composites: Raw Materials, Processing and Analysis, Springer International Publishing, Cham, Switzerland.
  25. Sakhare, K. and Borkar, S. (2022), "Characterization of jute fibre reinforced pine rosin modified soy protein isolate green composites", Adv. Mater. Res., 11(3), 191-209. https://doi.org/10.12989/amr.2022.11.3.191.
  26. Sakhare, K., Borkar, S. and Kale, R. (2023), "Fabrication and characterization of Bio composite based on jute fibre and pine rosin modified potato starch", J. Chem. Health Risk, 13, 258-271.
  27. Sharma, L. and Singh, C. (2016), "Composite film developed from the blends of sesame protein isolate and gum rosin and their properties", Polym. Compos., 39(5), 1480-1487. https://doi.org/10.1002/pc.24088.
  28. Shinoj, S., Visvanathan, R., Panigrahi, S. and Kochubabu, M. (2011), "Oil palm fiber (OPF) and its composites: A review", Indust. Crops Prod., 33(1), 7-22. https://doi.org/10.1016/j.indcrop.2010.09.009.
  29. Singha, A. and Kapoor, H. (2014), "Effects of plasticizer/cross-linker on the mechanical and thermal properties of starch/PVA blends", Iran. Polym. J., 23(8), 655-662. https://doi.org/10.1007/s13726-014-0260-9.
  30. Sousa, D., Biscaia, S., Viana, T., Gaspar, M., Mahendra, V., Mohan, S. and Mitchell, G. (2019), "Rosin based composites for additive manufacturing" Appl. Mech. Mater., 890, 70-76. https://doi.org/10.4028/www.scientific.net/AMM.890.70.
  31. Sun, S., Liu, P., Ji, N., Hou, H. and Dong, H. (2018), "Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing", Food Hydrocoll., 77, 964-975. https://doi.org/10.1016/j.foodhyd.2017.11.046.
  32. Torres, F., Arroyo, O. and Gomez, C. (2007), "Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites", J. Thermoplast. Compos. Mater., 20(2), 207-223. https://doi.org/10.1177/0892705707073945.
  33. Vazquez, A. and Alvarez, V. (2009), "Starch-cellulose fiber composites", Biodegradable Polymer Blends and Composites from Renewable Resources, John Wiley & Sons Inc., Hoboken, NJ, USA.
  34. Vilaseca, F., Mendez, J., Pelach, A., Llop,M., Canigueral, N., Girones, J. and Mutje, E. (2007), "Composite materials derived from biodegradable starch polymer and jute strands", Pr. Biochem., 42(3), 329-334. https://doi.org/10.1016/j.procbio.2006.09.004.