DOI QR코드

DOI QR Code

Frequency-adaptive DLIA-PLL-based current harmonic compensation for single-phase grid-interfaced inverters

  • Abdur Rehman (Department of Electrical Engineering, Soongsil University) ;
  • Tawfque Uzzaman (Department of Electrical Engineering, Soongsil University) ;
  • Woojin Choi (Department of Electrical Engineering, Soongsil University)
  • Received : 2024.02.22
  • Accepted : 2024.05.21
  • Published : 2024.08.20

Abstract

The growing focus on clean energy is driving the extensive usage of grid-connected inverters (GCIs) and nonlinear loads. The adoption of these nonlinear components causes disturbances, such as harmonic injection, frequency variation, and DC offset, which reduce the power quality of the grid. This reduced power quality induces unstable operation and deterioration of sensitive equipment. The organizations of electrical engineers have defined some standards such as IEEE 519 and P1547 to maintain the power quality of GCIs by setting the limits for harmonics, phases, and frequency variations. Harmonic elimination with grid synchronization methods is used for GCIs to meet the standards. However, the performance of these methods degrades for distorted grid conditions such as DC offset and harmonics. To rectify the mentioned issues, this study proposes a harmonic compensation method using a frequency-adaptive digital lock-in amplifier-based phase-locked loop (DLIA-PLL). The aim is to provide accurate harmonic detection and elimination by performing frequency and phase tracking for grid synchronization. Simulation and experimental results for a 5 kW inverter in an environment with high-total harmonic distortion (THD) conditions are presented to validate the performance of the proposed harmonic compensation with DLIA-PLL. Yokogawa WT1600, a power analyzer, is used to provide reference THD.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation (Grant No. R21XO01-35).

References

  1. Ashraf, M.N., Khan, R.A., Choi, W.: A novel selective harmonic compensation method for single-phase grid-connected inverters. IEEE Trans Ind Electron 68(6), 4848-4858 (2021). https://doi.org/10.1109/TIE.2020.2989723
  2. Shi, W., Yu, J.: A frequency estimation insight for analyzing synchronization stability of frequency-locked loop. IEEE Trans Power Deliv 38(6), 4017-4028 (2023). https://doi.org/10.1109/TPWRD.2023.3295358
  3. He, X., Geng, H., Yang, G.: A generalized design framework of notch filter based frequency-locked loop for three-phase grid voltage. IEEE Trans Ind Electron 65(9), 7072-7084 (2018). https://doi.org/10.1109/TIE.2017.2784413
  4. Pan, L., Xu, D., Zhang, J., Yin, C., Wu, Z., Guo, Y.: Active noise cancellation frequency-locked loop with a notch filter. J Power Electron 21(12), 1743-1756 (2021). https://doi.org/10.1007/s43236-021-00310-z
  5. Li, J., Wang, Q., Xiao, L., et al.: An accurate and robust adaptive notch filter-based phase-locked loop. J Power Electron. 20, 1514-1525 (2020). https://doi.org/10.1007/s43236-020-00127-2
  6. Bamigbade, A., Khadkikar, V.: Frequency estimators for SOGI FLL: modeling, design, and equivalence for FLL advancements. IEEE Trans Instrum Measure 71, 1-12 (2022). https://doi.org/10.1109/TIM.2022.3210972
  7. Satyanarayana, M., Teja, A.V.R.: A digital frequency locked loop with minimum computation overhead for heavily distorted single-phase grid systems. IEEE Trans Instrument Measure 71, 1-13 (2022). https://doi.org/10.1109/TIM.2022.3165273
  8. Lyu, S., Zheng, L., Song, J.: A second-order generalized integrator frequency locked loop with damping ratio adaptation. IEEE Trans Power Electron 37(3), 2694-2704 (2022). https://doi.org/10.1109/TPEL.2021.3113474
  9. Xu, J., Qian, H., Hu, Y., Bian, S., Xie, S.: Overview of SOGI-based single-phase phase-locked loops for grid synchronization under complex grid conditions. IEEE Access 9, 39275-39291 (2021). https://doi.org/10.1109/ACCESS.2021.3063774Y
  10. Han, Y., Luo, M., Zhao, X., Guerrero, J.M., Xu, L.: Comparative performance evaluation of orthogonal-signal-generators-based single-phase PLL algorithms-a survey. IEEE Trans Power Electron 31(5), 3932-3944 (2016) https://doi.org/10.1109/TPEL.2015.2466631
  11. Xie, M., Wen, H., Zhu, C., Yang, Y.: DC offset rejection improvement in single-phase SOGI-PLL algorithms: methods review and experimental evaluation. IEEE Access 5, 12810-12819 (2017) https://doi.org/10.1109/ACCESS.2017.2719721
  12. Hwang, S., Seo, S.: Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL. J Power Electron 20(3), 794-801 (2020). https://doi.org/10.1007/s43236-020-00077-9
  13. Lu, C., Zhou, B., Meng, F., Chang, Q.: Control scheme based on improved odd-harmonic repetitive control for third-harmonic injection two-stage matrix converter. IEEE J Emerg Sel Topics Power Electron 11(4), 3839-3852 (2023). https://doi.org/10.1109/JESTPE.2023.3279414
  14. Busada, C.A., Jorge, S.G., Solsona, J.A.: A synchronous reference frame pi current controller with dead beat response. IEEE Trans Power Electron 35(3), 3097-3105 (2020). https://doi.org/10.1109/TPEL.2019.2925705
  15. Campos-Gaona, D., Pena-Alzola, R., Monroy-Morales, J.L., Ordonez, M., Anaya-Lara, O., Leithead, W.E.: Fast selective harmonic mitigation in multifunctional inverters using internal model controllers and synchronous reference frames. IEEE Trans. Ind. Electron. 64(8), 6338-6349 (2017) https://doi.org/10.1109/TIE.2017.2682003
  16. Kim, E., Seong, U., Lee, J., Hwang, S.: Compensation of dead time effects in grid-tied single-phase inverter using SOGI. Proc. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2633-2637. Tampa, FL. (2017)
  17. Karbasforooshan, M.-S., Monfared, M.: Adaptive predictive deadbeat current control of single-phase multi-tuned shunt hybrid active power filters. IEEE Trans Power Deliv 39(1), 446-454 (2024). https://doi.org/10.1109/TPWRD.2023.3262662
  18. Husev, O., Roncero-Clemente, C., Makovenko, E., Pimentel, S.P., Vinnikov, D., Martins, J.: Optimization and implementation of the proportional-resonant controller for grid-connected inverter with significant computation delay. IEEE Trans. Ind. Electron. 67(2), 1201-1211 (2020) https://doi.org/10.1109/TIE.2019.2898616
  19. Teodorescu, R., et al.: Proportional-resonant controllers and filters for grid connected voltage-source converters. IEE Proc. Elect. Power Appl. 153(5), 750-762 (2006) https://doi.org/10.1049/ip-epa:20060008
  20. Oppenheim, A.V.: Discrete-time signal processing. Pearson Education, Chennai (1999)
  21. Omar H. Abdalla, Said Elmasry, Mohamed I. El-Korfolly, Ibrahim Htita: Harmonic Analysis of an Arc Furnace Load Based on the IEEE 519-2014 Standard. 2022 23rd International Middle East Power Systems Conference (MEPCON), Paper 170, pp. 1-7, Cairo, Egypt. IEEE Xplore. (2022). https://doi.org/10.1109/MEPCON55441.2022.10021725.
  22. "IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems." In: IEEE Std 519-2014 (Revision of IEEE Std 519-1992). pp.1-29. (2014). https://doi.org/10.1109/IEEESTD.2014.6826459.