References
- Kaba E, Hursoy N, Solak M, Celiker FB. Accuracy of large language models in thyroid nodule-related questions based on the Korean thyroid imaging reporting and data system (K-TIRADS). Korean J Radiol 2024;25:499-500 https://doi.org/10.3348/kjr.2024.0229
- Akinci D'Antonoli T, Stanzione A, Bluethgen C, Vernuccio F, Ugga L, Klontzas ME, et al. Large language models in radiology: fundamentals, applications, ethical considerations, risks, and future directions. Diagn Interv Radiol 2024;30:80-90 https://doi.org/10.4274/dir.2023.232417
- Gunes YC, Cesur T. A comparative study: diagnostic performance of ChatGPT 3.5, Google Bard, Microsoft Bing, and radiologists in thoracic radiology cases. medRxiv [Preprint]. 2024 [accessed on January 20, 2024]. Available at: https://doi.org/10.1101/2024.01.18.24301495
- Kim K, Cho K, Jang R, Kyung S, Lee S, Ham S, et al. Updated primer on generative artificial intelligence and large language models in medical imaging for medical professionals. Korean J Radiol 2024;25:224-242 https://doi.org/10.3348/kjr.2023.0818
- Panebianco V, Narumi Y, Altun E, Bochner BH, Efstathiou JA, Hafeez S, et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (vesical imaging-reporting and data system). Eur Urol 2018;74:294-306 https://doi.org/10.1016/j.eururo.2018.04.029