DOI QR코드

DOI QR Code

An experimental and analytical study of the sound wave propagation in beam formed from rubberized concrete material

  • Salhi Mohamed (Innovative Materials Laboratory and Renewable Energies, University of Relizane) ;
  • Safer Omar (Innovative Materials Laboratory and Renewable Energies, University of Relizane) ;
  • Dahmane Mouloud (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef) ;
  • Hassene Daouadji Nouria (Innovative Materials Laboratory and Renewable Energies, University of Relizane) ;
  • Alex Li (Materials and Mechanical Engineering, University of Reims Champagne Ardenne) ;
  • Benyahia Amar (Innovative Materials Laboratory and Renewable Energies, University of Relizane) ;
  • Boubekeur Toufik (Innovative Materials Laboratory and Renewable Energies, University of Relizane) ;
  • Badache Abdelhak (LABMAT Laboratory, ENPO Maurice Audin)
  • 투고 : 2024.04.02
  • 심사 : 2024.06.05
  • 발행 : 2024.08.25

초록

The amount of wave propagation through a rubber concrete construction is the subject of the current investigation. Rubber tire waste was used to make two different types of cement mixtures. One type contains sand substitute in amounts ranging from 15% to 60% of the total volume, while the other has gravel with diameters of 3/8 and 8/15 and 15% sand in the same mixture. A wide variety of concrete forms and compositions were created, and their viscous and solid state characteristics were assessed, along with their short-, medium-, and long-term strengths. Diffusion, density, mechanical strength resistance to compressive force, and ultrasound wave propagation were also assessed. The water-to-cement ratio and plasticizer were used in this investigation. In the second part of the study, an analytical model is presented that simulates the experimental model in predicting the speed of waves and the frequencies accompanying them for this type of mixture. Higher order shear deformation beam theory for wave propagation in the rubberized concrete beam is developed, considering the bidirectional distribution, which is primarily expressed by the density, the Poisson coefficient, and Young's modulus. Hamilton's concept is used to determine the governing equations of the wave propagation in the rubberized concrete beam structure. When the analytical and experimental results for rubber concrete beams were compared, the outcomes were very comparable. The addition of rubber gravel and sandy rubber to the mixture both resulted in a discernible drop in velocities and frequencies, according to the data.

키워드

참고문헌

  1. 2010 to 2015 Government Policy (2015), Waste and Recycling Policy Paper, Department for Environment Food & Rural Affairs, London, UK. https://www.gov.uk/government/publications/2010-to-2015-government-policy-waste-and-recycling/2010-to-2015-government-policy-waste-and-recycling
  2. Ait Atmane, R., Mahmoudi, N., Bennai, R., Ait Atmane, H. and Tounsi, A. (2021), "Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory", Steel Compos. Struct., 39(1), 95-107. https://doi.org/10.12989/scs.2021.39.1.095.
  3. Al-Akhras, N.M. and Smadi, M.M. (2004), "Properties of tire rubber ash mortar", Cement Concrete Compos., 26, 821-826. https://doi.org/10.1016/j.cemconcomp.2004.01.004.
  4. Aslani, F., Ma, G., Wan, D.L.Y. and Le, V.X.T. (2017), "Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete", J. Clean. Prod., 12, 3. https://doi.org/10.1016/j.jclepro.2017.12.003.
  5. ASTM C597 (2016), Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, USA.
  6. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Ait Atmane, H. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.
  7. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  8. Belabdelouahab, F. and Trouzine, H. (2014), "Research and enhancement of used tyres, such as material innovative in Algeria", Phys. Proc., 55, 68-74. https://doi.org/10.1016/j.phpro.2014.07.011.
  9. Benadouda, M., Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.000.
  10. Benazzouk, A., Douzane, O. and Langlet, T. (2007), "Physico mechanical properties and water absorption of cement composite containing shredded rubber wastes", Cement Concrete Compos., 29(10), 732-740. https://doi.org/10.1016/j.cemconcomp.2007.07.001.
  11. Bennai, R., Ait Atmane, H., Ayache, B., Tounsi, A. and Bedia, E.A. (2019a), "Free vibration response of functionally graded Porous plates using a higher-order shear and normal deformation theory", Earthq. Struct., 16(5), 547-561. https://doi.org/10.12989/eas.2019.16.5.547.
  12. Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A. (2019b), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
  13. Bennai, R., Fourn, H., Nebab, M., Ait Atmane, R., Mellal, F., Ait Atmane, H., ... and Touns, A. (2022b), "On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT", Adv. Concrete Constr., 14(3), 169-183. https://doi.org/10.12989/acc.2022.14.3.169.
  14. Bennai, R., Mellal, F., Nebab, M., Fourn, H., Benadouda, M., Atmane, H.A., ... and Hussain, M. (2022a), "On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT", Earthq. Struct., 22(5), 447-460. https://doi.org/10.12989/eas.2022.22.5.447.
  15. Bravo, M. and de Brito, J. (2012), "Concrete made with used tyreaggregate: Durability-related performance", J. Clean. Prod., 25, 42-50. https://doi.org/10.1016/j.jclepro.2011.11.066.
  16. Chaturvedy, G.K. and Pandey, U.K. (2022), "Performance characteristics of rubberized concrete: A multipoint review", Innov. Infrastr. Solut., 7, 00637. https://doi.org/10.1007/s41062-021-00637-3.
  17. Chaturvedy, G.K. and Pandey, U.K. (2023a), "Influence of graphene oxide on the long-term durability behaviour of high-strength rubberised concrete", Mech. Adv. Mater. Struct., 32(1), 22-33. https://doi.org/10.1080/1536383X.2023.2260030.
  18. Chaturvedy, G.K. and Pandey, U.K. (2023c), "Effect of graphene oxide on the microscopic, physical and mechanical characteristics of rubberized concrete", Innov. Infrastr. Solut., 8(6), 163. https://doi.org/10.1007/s41062-023-01133-6.
  19. Chaturvedy, G.K., Pandey, U.K. and Singh, M.P. (2023b), "Analyzing the behavior of graphene oxide on high-strength rubberized concrete properties using different optimization techniques", Diamond Related Mater., 140, 110485. https://doi.org/10.1016/j.diamond.2023.110485.
  20. Chen, C., Chen, X. and Zhang, J. (2021), "Experimental study on flexural fatigue behavior of self-compacting concrete with waste tire rubber", Mech. Adv. Mater. Struct., 28(16), 1691-1702. https://doi.org/10.1080/15376494.2019.1701152.
  21. Chen, H., Li, D., Ma, X., Zhong, Z. and Abd-Elaal, E.S. (2021), "Mesoscale analysis of rubber particle effect on young's modulus and creep behaviour of crumb rubber concrete", Int. J. Mech. Mater. Des., 17, 659-678. https://doi.org/10.1007/s10999-021-09552-y.
  22. Corinaldesi, V., Nardinocchi, A. and Donnini, J. (2016), "Reuse of recycled glass in mortar manufacturing", Eur. J. Environ. Civil Eng., 10, 140-151. https://doi.org/10.1080/19648189.2016.1246695.
  23. Dahmane, M., Benadouda, M., Bennai, R., Saimi, A. and Atmane, H.A. (2024), "Effect of crack on the dynamic response of bidirectional porous functionally graded beams on an elastic foundation based on finite element method", Acta Mech., 235(6), 3849-3860. https://doi.org/10.1007/s00707-024-03906-1.
  24. Dahmane, M., Benadouda, M., Fellah, A., Saimi, A., Hassen, A.A. and Bensaid, I. (2023), "Porosities-dependent wave propagation in bi-directional functionally graded cantilever beam with higher-order shear model", Mech. Adv. Mater. Struct., 2023, 1-11. https://doi.org/10.1080/15376494.2023.2253546.
  25. Debbaghi, S., Dahmane, M., Benadouda, M., Atmane, H.A., Bendenia, N. and Hadji, L. (2024), "Wave propagation of bi-directional porous FG beams using Touratier's higher-order shear deformation beam theory", Coupl. Syst. Mech., 13(1), 43-60. https://doi.org/10.12989/csm.2024.13.1.043.
  26. Djilali Djebbour, K., Mokhtar, N., Hassen, A.A., Alghanmi, R.A., Hadji, L. and Riadh, B. (2024), "An enhanced quasi-3D HSDT for free vibration analysis of porous FG-CNT beams on a new concept of orthotropic VE-foundations", Mech. Adv. Mater. Struct., 2024, 1-17. https://doi.org/10.1080/15376494.2024.2356728.
  27. Eddine, B.T. and Salah, M.M. (2012), "Solid waste as renewable source of energy: Current and future possibility in Algeria", Int. J. Energy Environ. Eng., 3, 1-12. https://doi.org/10.1186/2251-6832-3-17.
  28. Eiras, J.N., Segovia, F., Borrachero, M.V., Monzo', J., Bonilla, M. and Paya', J. (2014), "Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires", Mater. Des., 59, 550-557. https://doi.org/10.1016/j.matdes.2014.03.021.
  29. Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J. and Youssf, O. (2021), "Dynamic performance of rubberized concrete and its structural applications - An overview", Eng. Struct., 234, 111990. https://doi.org/10.1016/j.engstruct.2021.111990.
  30. Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J. and Youssf, O. (2022), "Composite walls composed of profiled steel skin and foam rubberized concrete subjected to eccentric compressions", J. Build. Eng., 46, 103715. https://doi.org/10.1016/j.jobe.2021.103715.
  31. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O. and Mills, J.E. (2020a), "Influence of rubber particles on the properties of foam concrete", J. Build. Eng., 30, 101217. https://doi.org/10.1016/j.jobe.2020.101217.
  32. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E. and Xiao, J. (2020b), "Structural behaviour of composite panels made of profiled steel sheets and foam rubberised concrete under monotonic and cyclic shearing loads", Thin Wall. Struct., 151, 106726. https://doi.org/10.1016/j.tws.2020.106726.
  33. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., Xiao, J. and Singh, A. (2020c), "Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads", Eng. Struct., 211, 110448. https://doi.org/10.1016/j.engstruct.2020.110448.
  34. Frahlia, H., Bennai, R., Nebab, M., Ait Atmane, H. and Tounsi, A. (2022), "Assessing effects of parameters of viscoelastic foundation on the dynamic response of functionally graded plates using a novel HSDT theory", Mech. Adv. Mater. Struct., 30(13), 2765-2779. https://doi.org/10.1080/15376494.2022.2062632.
  35. Gesoglu, M. and Guneyisi, E. (2011), "Permeability properties of self-compacting rubberized concretes", Constr. Build. Mater., 25(8), 3319-3326. https://doi.org/10.1016/j.conbuildmat.2011.03.021.
  36. Guo, Y.C., Zhang, J.H., Chen, G., Chen, G.M. and Xie, Z.H. (2014), "Fracture behaviors of a new steel fiber reinforced recycled aggregate concrete with crumb rubber", Constr. Build. Mater., 53, 32-39. https://doi.org/10.1016/j.conbuildmat.2013.11.075.
  37. Holmes, N., Dunne, K. and O'Donnell, J. (2014), "Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings", Constr. Build. Mater., 55, 365-378. https://doi.org/10.1016/j.conbuildmat.2014.01.046.
  38. Hunag, L.J., Wang, H.Y. and Wu, Y.W. (2016), "Properties of the mechanical in controlled low strength rubber lightweight aggregate concrete (CLSRLC)", Constr. Build. Mater., 112, 1054-1058. https://doi.org/10.1016/j.conbuildmat.2016.03.016.
  39. Issa, C.A. and Salem, G. (2013), "Utilization of recycled crumb rubber as fine aggregates in concrete mix design", Constr. Build. Mater., 42, 48-52. https://doi.org/10.1016/j.conbuildmat.2012.12.054.
  40. Kamel, O.A., Abouhussien, A.A., Hassan, A.A. and Abdel-Aleem, B.H. (2023), "Acoustic emission waves propagation in rubberized concrete under special monitoring conditions", J. Mater. Civil Eng., 35(11), 04023379. https://doi.org/10.1061/JMCEE7.MTENG-15691.
  41. Kehli, A., Nebab, M., Bennai, R., Ait Atmane, H. and Dahmane, M. (2024), "Dynamic characteristics analysis of functionally graded cracked beams resting on viscoelastic medium using a new quasi-3D HSDT", Mech. Adv. Mater. Struct., 2024, 1-14. https://doi.org/10.1080/15376494.2024.2326983.
  42. Khatib, J.M., Negim, E.M., Sohl, H.S. and Chileshe, N. (2012), "Glass powder utilisation in concrete production", Eur. J. Appl. Sci., 4(4), 173-176. https://doi.org/10.5829/idosi.ejas.2012.4.4.1102.
  43. Kotresh, K.M. and Belachew, M.G. (2014), "Study on waste tyre rubber as concrete aggregates", Int. J. Sci. Eng. Technol., 3(4), 433-436.
  44. Lamond, J.F. (2006), Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM International, West Conshohocken, PA, USA.
  45. Latroch, N., Dahmane, M., Benosman, A.S., Bennai, R., Atmane, H.A. and Benadouda, M. (2023), "Inclined crack identification in bidirectional FG beams on an elastic foundation using the h-version of the finite element method", Mech. Adv. Mater. Struct., 2023, 1-7. https://doi.org/10.1080/15376494.2023.2290226.
  46. Li, J., Saberian, M. and Nguyen, B.T. (2018), "Effect of crumb rubber on the mechanical properties of crushed recycled pavement materials", J. Environ. Manag., 218, 291-299. https://doi.org/10.1016/j.jenvman.2018.04.062.
  47. Ling, T.C., Poon, C.S. and Wong, H.W. (2013), "Management and recycling of waste glass in concrete products: Current situations in Hong Kong", Resour. Conserv. Recycl., 70, 25-31. https://doi.org/10.1016/j.resconrec.2012.10.006.
  48. Mellal, F., Bennai, R., Avcar, M., Nebab, M. and Atmane, H.A. (2023), "On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory", Acta Mech., 234(9), 3955-3977. https://doi.org/10.1007/s00707-023-03603-5.
  49. Mellal, F., Bennai, R., Nebab, M., Atmane, H.A., Bourada, F., Hussain, M. and Tounsi, A. (2021), "Investigation on the effect of porosity on wave propagation in FGM plates resting on elastic foundations via a quasi-3D HSDT", Waves Random Complex Media, 2021, 1-27. https://doi.org/10.1080/17455030.2021.1983235.
  50. Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of crumb rubber concrete (CRC) prepared by watersoaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085.
  51. Mohammed, B.S., Hossain, K.M.A., Swee, J.T.E., Wong, G. and Abdullahi, M. (2012), "Properties of crumb rubber hollow concrete block", J. Clean. Prod., 23, 57-67. https://doi.org/10.1016/j.jclepro.2011.10.035.
  52. Najim, K.B. and Hall, M.R. (2012), "Mechanical and dynamic properties of self-compacting crumb rubber modified concrete", Constr. Build. Mater., 27, 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013.
  53. Nebab, M., Ait Atmane, H., Bennai, R. and Dahmane, M. (2024a), "Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT", Struct. Eng. Mech., 90(1), 83-96. https://doi.org/10.12989/sem.2024.90.1.083.
  54. Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019b), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17, 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  55. Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019c), "Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation", Arab. J. Geosci., 12(24), 809. https://doi.org/10.1007/S12517-019-4871-5.
  56. Nebab, M., Atmane, H.A. and Bennai, R. (2024b), "Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs", Steel Compos. Struct., 51(2), 185-202. https://doi.org/10.12989/scs.2024.51.2.185.
  57. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E.A. (2019a), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.
  58. Nebab, M., Dahmane, M., Belqassim, A., Ait Atmane, H., Bernard, F., Benadouda, M., ... and Hadji, L. (2023), "Fundamental frequencies of cracked FGM beams with influence of porosity and Winkler/Pasternak/Kerr foundation support using a new quasi-3D HSDT", Mechanics of Advanced Materials and Structures, 2023, 1-13. https://doi.org/10.1080/15376494.2023.2294371.
  59. Parvaneh, V. and Khiabani, S.H. (2019), "Mechanical and piezoresistive properties of self-sensing smart concretes reinforced by carbon nanotubes", Mech. Adv. Mater. Struct., 26(11), 993-1000. https://doi.org/10.1080/15376494.2018.1432789.
  60. Pedro, D., De Brito, J. and Veiga, R. (2013), "Mortars made with fine granulate from shredded tires", J. Mater. Civil Eng. (ASCE), 25(4), 519-529. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000606.
  61. Rafat, S. and Tarun, R.N. (2004), "Properties of concrete containing scrap-tire rubber-an overview", Waste Manag., 24, 563-569. https://doi.org/10.1016/j.wasman.2004.01.006.
  62. Saberian, M., Li, J., Nguyen, B. and Wang, G. (2018), "Permanent deformation behaviour of pavement base and subbase containing recycle concrete aggregate, coarse and fine crumb rubber", Constr. Build. Mater., 178, 51-58. https://doi.org/10.1016/j.conbuildmat.2018.05.107.
  63. Sadoun, Z., Bennai, R., Nebab, M., Dahmane, M. and Atmane, H.A. (2023), "Investigation of the behavior of an RC beam strengthened by external bonding of a porous P-FGM and E-FGM plate in terms of interface stresses", Struct. Monit. Maint., 10(4), 315-337. https://doi.org/10.1007/s40515-023-00303-4.
  64. Salhi, M., Boubekeur, T., Li, A. and Ghrici, M. (2022), "Effects of cement additions on self-compacting concrete durability indicators", Period. Polytech. Civil Eng., 66(2), 640-652.
  65. Thomas, B.S. and Gupta, R.C. (2016), "Properties of high strength concrete containing scrap tire rubber", J. Clean. Prod., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019.
  66. Thomas, B.S., Gupta, R.C. and Panicker, V.J. (2016), "Recycling of waste tire rubber as aggregate in concrete: Durability-related performance", J. Clean. Prod., 112, 504-513. https://doi.org/10.1016/j.jclepro.2015.08.046.
  67. Topcu, I.B. and Demir, A. (2007), "Durability of rubberized mortar and concrete", J. Mater. Civil Eng. ASCE, 19(2), 173-178. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(173).
  68. Trouzine, H., Asroun, A., Asroun, N., Belabdelouhab, F. and Long, N.T. (2011) "Problematique des pneumatiques usages en Algerie", Nat. Technol., 3(2), 28-35.
  69. Uygunoglu, T. and Topcu, I.B. (2010), "The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars", Constr. Build. Mater., 24, 1141-1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027.
  70. Vakhshouri, B., Nejadi, S. and Erkmen, E. (2019), "Experimental and numerical analysis of deflection of posttensioned lightweight concrete slabs", Mech. Adv. Mater. Struct., 26(22), 1849-1857. https://doi.org/10.1080/15376494.2018.1452319.
  71. Wang, H.Y., Chen, B.T. and Wu, Y.W. (2013), "A study of the fresh properties of controlled low-strength rubber lightweight aggregate concrete (CLSRLC)", Constr. Build. Mater., 41, 526-531. https://doi.org/10.1016/j.conbuildmat.2012.11.113.
  72. Waris, M.B., Najwani, H., Al-Jabri, K. and Al-Saidy, A. (2018), "Use of recycled tyre rubber in non-structural concrete", International Conference on Civil, Offshore & Environmental Engineering 2018 (ICCOEE 2018), Kuala Lumpur, Malaysia, August.
  73. Xue, J. and Shinozuka, M. (2013), "Rubberized concrete: A green structural material with enhanced energy-dissipation capability", Constr. Build. Mater., 42, 196-204. https://doi.org/10.1016/j.conbuildmat.2013.01.005.
  74. Xue, Z., Geng, X., Li, X., Cao, Y., Zhang, J., Aydeng, A. and Liu, J. (2023), "Compressive mechanical properties of lattice structures filled with silicone rubber", Mech. Adv. Mater. Struct., 2023, 1-11. https://doi.org/10.1080/15376494.2023.2265354.
  75. Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.
  76. Yung, W.H., Yung, L.C. and Hua, L.H. (2013), "A study of the durability properties of waste tire rubber applied to self-compacting concrete", Constr. Build. Mater., 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.
  77. Zheng, X., Zheng, C., Wu, Y., Ren, Z. and Bai, H. (2024), "Mechanical behavior of entangled metallic wire mesh-silicone rubber interpenetrating phase composites under quasi-static compression", Mech. Adv. Mater. Struct., 31(2), 483-492. https://doi.org/10.1002/adem.202302049.