References
- Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan, M.H. (2020), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
- Alliance, A. (2001), Seismic Fragility Formulations for Water Systems, Part I-Guideline, American Society of Civil Engineers, Reston, VA, USA.
- Bakalis, K., Kohrangi, M. and Vamvatsikos, D. (2018), "Seismic intensity measures for above-ground liquid storage tanks", Earthq. Eng. Struct. Dyn., 47(9), 1844-1863. https://doi.org/10.1002/eqe.3043.
- Bakalis, K., Vamvatsikos, D. and Fragiadakis, M. (2017), "Seismic risk assessment of liquid storage tanks via a nonlinear surrogate model", Earthq. Eng. Struct. Dyn., 46(15), 2851-2868. https://doi.org/10.1002/eqe.2939.
- Balendra, T., Ang, K., Paramasivam, P. and Lee, S.J.I.J.o.M.S. (1982), "Free vibration analysis of cylindrical liquid storage tanks", Int. J. Mech. Sci., 24(1), 47-59. https://doi.org/10.1016/0020-7403(82)90020-0.
- Bauer, H.F. (1964), Fluid Oscillations in the Containers of a Space Vehicle and Their Influence upon Stability, National Aeronautics and Space Administration, Washington, D.C., USA.
- Brebbia, C.A., Popov, V. and Popov, V. (2011), Boundary Elements and Other Mesh Reduction Methods XXXIII, Wit Press, Southampton, UK.
- Brunesi, E., Nascimbene, R., Pagani, M. and Beilic, D. (2014), "Seismic performance of storage steel tanks during the May 2012 Emilia, Italy, earthquakes", J. Perform. Constr. Facil., 29(5), 04014137. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000628.
- Buratti, N. and Tavano, M. (2014), "Dynamic buckling and seismic fragility of anchored steel tanks by the added mass method", Earthq. Eng. Struct. Dyn., 43(1), 1-21. https://doi.org/10.1002/eqe.2326.
- Burkacki, D. and Jankowski, R. (2019), "Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes", Earthq. Struct., 17(2), 175-189. https://doi.org/10.12989/eas.2019.17.2.175.
- Burkacki, D. and Jankowski, R. (2020), "Response of cylindrical steel tank under stochastically generated non-uniform earthquake excitation", 4th Polish Congress of Mechanics and the 23rd International Conference on Computer Methods in Mechanics, Krakow, Poland, September.
- Cao, Q.S. and Zhao, Y. (2010), "Buckling strength of cylindrical steel tanks under harmonic settlement", Thin Wall. Struct., 48(6), 391-400. https://doi.org/10.1016/j.tws.2010.01.011.
- Celik, A.I. and Kose, M.M. (2019) "Dynamic buckling analysis of cylindrical steel water storage tanks subjected to Kobe earthquake loading", Steel Constr., 13(2), 128-138. https://doi.org/10.1002/stco.201900003.
- Celik, A.I., Kose, M.M., Akgul, T. and Apay, A.C. (2018), "Strengthening of cylindrical steel water tank under the seismic loading", Kahramanmaras Sutcu Imam Univ. J. Eng. Sci., 21(4), 334-345. https://doi.org/10.17780/ksujes.441831.
- Celik, A.I., Zeybek, O. and Ozkilic, Y. (2024), "Effect of the initial imperfection on the response of the stainless steel shell structures", Steel Compos. Struct., 50(6), 705. https://doi.org/10.12989/scs.2024.50.6.705.
- Chaulagain, N.R., Sun, C.H. and Kim, I.H. (2019), "Seismic fragility analysis of ground supported horizontal cylindrical tank", J. Korea Inst. Struct. Mainten. Inspect., 23(7), 145-151. https://doi.org/10.11112/jksmi.2019.23.7.145.
- Christensen, R.M. (2012), Mechanics of Composite Materials, Courier Corporation, North Chelmsford, MA, USA.
- Colombo, J. and Almazan, J. (2017), "Experimental investigation on the seismic isolation for a legged wine storage tank", J. Constr. Steel Res., 133, 167-180. https://doi.org/10.1016/j.jcsr.2017.02.013.
- Cortes, G., Nussbaumer, A., Berger, C. and Lattion, E. (2011), "Experimental determination of the rotational capacity of wall-to-base connections in storage tanks", J. Constr. Steel Res., 67(7), 1174-1184. https://doi.org/10.1016/j.jcsr.2011.02.010.
- Damatty, A.E., Korol, R.M. and Mirza, F.A. (1997), "Stability of imperfect steel conical tanks under hydrostatic loading", J. Struct. Eng., 123(6), 703-712. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(703).
- Daniel, I.M., Ishai, O., Daniel, I.M. and Daniel, I. (1994), Engineering Mechanics of Composite Materials, Oxford University Press, New York, NY, USA.
- del Rey Castillo, E., Griffith, M. and Ingham, J. (2018), "Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors", Compos. Struct., 203, 382-395. https://doi.org/10.1016/j.compstruct.2018.07.029.
- Dogangun, A. and Livaoglu, R. (2004), "Hydrodynamic pressures acting on the walls of rectangular fluid containers", Struct. Eng. Mech., 17(2), 203-214. https://doi.org/10.12989/sem.2004.17.2.203.
- Elgabbas, F., El-Ghandour, A., Abdelrahman, A. and El-Dieb, A. (2010), "Different CFRP strengthening techniques for prestressed hollow core concrete slabs: Experimental study and analytical investigation", Compos. Struct., 92(2), 401-411. https://doi.org/10.1016/j.compstruct.2009.08.015
- Ergin, A., Temarel, P. and vibration (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound, 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
- Eurocode 8 (2004), Eurocode 8: Design of Structures for Earthquake Resistance, European Commission, Ispra, Italy.
- Ewins, D. and Imregun, M. (1986), "State-of-the-art assessment of structural dynamic response analysis methods (DYNAS)", Shock Vib. Bull., 59, 1.
- Fan, J. (2018), Modeling of Lightly Confined Reinforced Concrete Columns Subjected to Lateral and Axial Loads, The Ohio State University, Columbus, OH, USA.
- Fan, J., Hur, J., Sezen, H., Denning, R. and Aldemir, T. (2020), "Structural modeling and dynamic analysis of condensate storage tanks in nuclear power plants", Nucl. Eng. Des., 363, 110613. https://doi.org/10.1016/j.nucengdes.2020.110613.
- Gamage, J., Wong, M.B. and Al-Mahaidi, R. (2005). "Performance of CFRP strengthened concrete members under elevated temperatures", Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), Hong Kong, China, December.
- Gemi, L. (2018), "Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study", Compos. Part B: Eng., 153, 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056.
- Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
- Gemi, L., Kayrici, M., Uludag, M., Gemi, D.S. and Sahin, O .S. (2018), "Experimental and statistical analysis of low velocity impact response of filament wound composite pipes", Compos. Part B: Eng., 149, 38-48. https://doi.org/10.1016/j.compositesb.2018.05.006.
- Gemi, L., Morkavuk, S., Koklu, U. and Gemi, D.S. (2019), "An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation", Compos. Part B: Eng., 172, 186-194. https://doi.org/10.1016/j.compositesb.2019.05.023.
- Gemi, L., Morkavuk, S., Koklu, U. and Yazman, S. (2020), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality", Compos. Struct., 235, 111737. https://doi.org/10.1016/j.compstruct.2019.111737.
- Gemi, L., Sahin, O.S. and Akdemir, A. (2017), "Experimental investigation of fatigue damage formation of hybrid pipes subjected to impact loading under internal pre-stress", Compos. Part B: Eng., 119, 196-205. https://doi.org/10.1016/j.compositesb.2017.03.051.
- Godoy, L.A. (2016), "Buckling of vertical oil storage steel tanks: Review of static buckling studies", Thin Wall. Struct., 103, 1-21. https://doi.org/10.1016/j.tws.2016.01.026.
- Goudarzi, M.A., Moosapoor, M. and Nikoomanesh, M.R. (2020), "Seismic design loads of cylindrical liquid tanks with insufficient nfreeboard", Earthq. Spectra, 36(4), 1844-1863. https://doi.org/10.1177/8755293020926191.
- Hamdan, F. (2000a), "Seismic behaviour of cylindrical steel liquid storage tanks", J. Constr. Steel Res., 53(3), 307-333. https://doi.org/10.1016/S0143-974X(99)00039-5.
- Hamdan, F. (2000b), "Seismic behaviour of cylindrical steel liquid storage tanks", J. Constr. Steel Res., 53(3), 307-333. https://doi.org/10.1016/S0143-974X(99)00039-5
- Hashemi, S., Saadatpour, M.M. and Kianoush, M. (2013b), "Dynamic analysis of flexible rectangular fluid containers subjected to horizontal ground motion", Earthq. Eng., 42(11), 1637-1656. https://doi.org/10.1002/eqe.2291.
- Hashemi, S., Saadatpour, M.M. and Kianoush, M.R. (2013a), "Dynamic analysis of flexible rectangular fluid containers subjected to horizontal ground motion", Earthq. Eng., 42(11), 1637-1656. https://doi.org/10.1002/eqe.2291.
- Hernandez-Hernandez, D., Larkin, T., Chouw, N. and Banide, Y. (2020), "Experimental findings of the suppression of rotary sloshing on the dynamic response of a liquid storage tank", J. Fluid. Struct., 96, 103007. https://doi.org/10.1016/j.jfluidstructs.2020.103007.
- Housner, G.W. (1954), "Earthquake pressures on fluid containers", California Institute of Technology, Earthquake Research Laboratory, Pasadena, CA, USA.
- Housner, G.W. (1957), "Dynamic pressures on accelerated fluid containers", Bull. Seismol. Soc. Am., 47(1), 15-35. https://doi.org/10.1785/BSSA0470010015
- Housner, G.W. (1963), "The dynamic behavior of water tanks", Bull. Seismol. Soc. Am., 53(2), 381-387. https://doi.org/10.1785/BSSA0530020381
- Kashani, B.K. and Sani, A.A.J.E.J.o.M.-A.S. (2016), "Free vibration analysis of horizontal cylindrical shells including sloshing effect utilizing polar finite elements", Eur. J. Mech. A/Solids, 58, 187-201. https://doi.org/10.1016/j.euromechsol.2016.02.002.
- Ke, L., Li, C., Luo, N., He, J., Jiao, Y. and Liu, Y. (2019), "Enhanced comprehensive performance of bonding interface between CFRP and steel by a novel film adhesive", Compos. Struct., 229, 111393. https://doi.org/10.1016/j.compstruct.2019.111393.
- Khalil, M., Ruggieri, S. and Uva, G. (2022). "Assessment of structural behavior, vulnerability, and risk of industrial silos: State-of-the-art and recent research trends", Appl. Sci., 12(6), 3006. https://doi.org/10.3390/app12063006.
- Khalil, M., Ruggieri, S., Tateo, V., Nascimbene, R. and Uva, G. (2023), "A numerical procedure to estimate seismic fragility of cylindrical ground-supported steel silos containing granular-like material", Bull. Earthq. Eng., 21, 5915-5947. https://doi.org/10.1007/s10518-023-01751-6.
- Kirtas, E., Rovithis, E. and Makra, K. (2020), "On the modal response of an instrumented steel water-storage tank including soil-structure interaction", Soil Dyn. Earthq. Eng., 135, 106-198. https://doi.org/10.1016/j.soildyn.2020.106198.
- Kohrangi, M., Bakalis, K., Triantafyllou, G., Vamvatsikos, D. and Bazzurro, P. (2023), "Hazard consistent record selection procedures accounting for horizontal and vertical components of the ground motion: Application to liquid storage tanks", Earthq. Eng. Struct. Dyn., 52(4), 1232-1251. https://doi.org/10.1002/eqe.3813.
- Ma, C., Wang, D. and Wang, Z. (2017), "Seismic retrofitting of full- scale RC interior beam-column-slab subassemblies with CFRP wraps", Compos. Struct., 159, 397-409. https://doi.org/10.1016/j.compstruct.2016.09.094.
- Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
- Mahdavipour, M.A., Eslami, A. and Jehel, P. (2019), "Seismic evaluation of ordinary RC buildings retrofitted with externally bonded FRPs using a reliability-based approach", Compos. Struct., 232, 111567. https://doi.org/10.1016/j.compstruct.2019.111567.
- Malhotra, P.K., Wenk, T. and Wieland, M. (2000), "Simple procedure for seismic analysis of liquid-storage tanks", Struct. Eng. Int., 10(3), 197-201. https://doi.org/10.2749/101686600780481509.
- Mieda, G., Nakamura, H., Matsui, T., Ochi, Y. and Matsumoto, Y. (2019), "Mechanical behavior of CFRP on steel surface molded and bonded by vacuum-assisted resin transfer molding technology", SN Appl. Sci., 1(6), 601. https://doi.org/10.1007/s42452-019-0603-4.
- Miladi, S. and Razzaghi, M.S. (2019), "Failure analysis of an unanchored steel oil tank damaged during the Silakhor earthquake of 2006 in Iran", Eng. Fail. Anal., 96, 31-43. https://doi.org/10.1016/j.engfailanal.2018.09.031.
- Moeini, M., Nikomanesh, M.R. and Goudarzi, M.A. (2019), "Vertical isolation of seismic loads in aboveground liquid storage tanks", J. Seismol. Earthq. Eng., 21(1), 45-53.
- Mohamadshahi, M. and Afrous, A. (2015), "General considerations in the seismic analysis of steel storage tanks", J. Sci. Res. Develop., 2(6), 151-156.
- Molin, B. and Remy, F. (2013), "Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen", J. Fluids, 43, 463-480. https://doi.org/10.1016/j.jfluidstructs.2013.10.001.
- Morkavuk, S., Koklu, U., Bagci, M. and Gemi, L. (2018), "Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study", Compos. Part B: Eng., 147, 1-11. https://doi.org/10.1016/j.compositesb.2018.04.024.
- Moslemi, M. (2011), "Seismic response of ground cylindrical and elevated conical reinforced concrete tanks", Ph.D. Thesis, Civil Engineering, Ryerson University, Toronto, Ontario, Canada.
- Nelson, J.W. (2010), "Composite materials for aircraft structures: A brief review of practical application", Ph.D. Research, Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA.
- Nichols, R.J. (1983), "Ford's CNG vehicle research", Energy Technol., 10, 1.
- Nicolici, S. and Bilegan, R. (2013), "Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks", Nucl. Eng. Des., 258, 51-56. https://doi.org/10.1016/j.nucengdes.2012.12.024
- Nikoomanesh, M.R., Moeini, M. and Goudarzi, M.A. (2019), "An innovative isolation system for improving the seismic behaviour of liquid storage tanks", Int. J. Press. Vessel. Pip., 173, 1-10. https://doi.org/10.1016/j.ijpvp.2019.04.012.
- Niwa, A. and Clough, R.W. (1982), "Buckling of cylindrical liquid- storage tanks under earthquake loading", Earthq. Eng. Struct. Dyn., 10(1), 107-122. https://doi.org/10.1002/eqe.4290100108.
- Ozdemir, Z., Souli, M. and Fahjan, Y. (2010), "Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks", Eng. Struct., 32(2), 409-423. https://doi.org/10.1016/j.engstruct.2009.10.004.
- Ozdemir, Z., Souli, M. and Yasin, M.F. (2012), "Numerical evaluation of nonlinear response of broad cylindrical steel tanks under multidimensional earthquake motion", Earthq. Spectra, 28(1), 217-238. https://doi.org/10.1193/1.3672996.
- Ozkilic, Y.O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. https://doi.org/10.12989/scs.2020.35.3.353.
- Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turk. J. Eng. (TUJE), 4(4), 169-175. https://doi.org/10.31127/tuje.631481.
- Pereira, M.F., De Nardin, S. and El Debs, A.L. (2020), "Partially encased composite columns using fiber reinforced concrete: Experimental study", Steel Compos. Struct., 34(6), 909-927. https://doi.org/10.12989/scs.2020.34.6.909.
- Phan Viet, N., Kitano, Y. and Matsumoto, Y. (2020), "Experimental investigations of the strengthening effects of CFRP for thin-walled storage tanks under dynamic loads", Appl. Sci., 10(7), 2521. https://doi.org/10.3390/app10072521.
- Phan Viet, N., Kitano, Y. and Matsumoto, Y. (2020), "Experimental investigations of the strengthening effects of CFRP for thin-walled storage tanks under dynamic loads", Appl. Sci., 10(7), 2521. https://doi.org/10.3390/app10072521.
- Phan, H.N., Paolacci, F. and Mongabure, P. (2017), "Nonlinear finite element analysis of unanchored steel liquid storage tanks subjected to seismic loadings", ASME 2017 Pressure Vessels and Piping Conference, Waikoloa, HI, USA, July.
- Qin, Y., Luo, K.R. and Yan, X. (2020), "Buckling analysis of steel plates in composite structures with novel shape function", Steel Compos. Struct., 35(3), 405-413. https://doi.org/10.12989/scs.2020.35.3.405.
- Rastgar, M. and Showkati, H. (2018), "Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection", J. Constr. Steel Res., 145, 289-299. https://doi.org/10.1016/j.jcsr.2018.02.028.
- Sadowski, A.J. and Rotter, J.M. (2013), "Buckling in eccentrically discharged silos and the assumed pressure distribution", J. Eng. Mech., 139(7), 858-867. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000525.
- Shekari, M.R., Khaji, N. and Ahmadi, M.T. (2010), "On the seismic behavior of cylindrical base-isolated liquid storage tanks excited by long-period ground motions", Soil Dyn. Earthq. Eng., 30(10), 968-980. https://doi.org/10.1016/j.soildyn.2010.04.008.
- Sunitha, K. and Jacob, B. (2015), "Dynamic buckling of steel water tank under seismic loading", Int. J. Civil Eng. (IJCE), 4(6), 81-90. https://doi.org/10.1002/stco.201900003.
- Tarakcioglu, N., Gemi, L. and Yapici, A. (2005), "Fatigue failure behavior of glass/epoxy±55 filament wound pipes under internal pressure", Compos. Sci. Technol., 65(3-4), 703-708. https://doi.org/10.1016/j.compstruct.2009.07.027.
- Torayca (2020), High-Performance Carbon Fiber Torayca, Torayca Cloth, Toray Industries, Inc, Tokyo, Japan.
- Van Cao, V. and Ronagh, H.R. (2014), "Reducing the seismic damage of reinforced concrete frames using FRP confinement", Compos. Struct., 118, 403-415. https://doi.org/10.1016/j.compstruct.2014.07.038.
- Vasiliev, V.V. and Morozov, E.V. (2013), Advanced Mechanics of Composite Materials and Structural Elements, Newnes, Sebastopol, CA, USA.
- Virella, J., Godoy, L. and Suarez, L. (2003), "Influence of the roof on the natural periods of empty steel tanks", Eng. Struct., 25(7), 877-887. https://doi.org/10.1016/S0141-0296(03)00022-1.
- Virella, J., Godoy, L. and Suarez, L. (2006a), "Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation", J. Constr. Steel Res., 62(6), 521-531. https://doi.org/10.1016/j.jcsr.2005.10.001.
- Virella, J.C., Godoy, L.A. and Suarez, L.E. (2006), "Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation", J. Constr. Steel Res., 62(6), 521-531. https://doi.org/10.1016/j.jcsr.2005.10.001.
- Virella, J.C., Godoy, L.A. and Suarez, L.E. (2006b), "Fundamental modes of tank-liquid systems under horizontal motions", Eng. Struct., 28(10), 1450-1461. https://doi.org/10.1016/j.engstruct.2005.12.016.
- Wikipedia (2020), Finite Element Method. https://en.wikipedia.org/wiki/Finite_element_method
- Xu, G., Ding, Y., Xu, J., Chen, Y. and Wu, B. (2020), "A shaking table substructure testing method for the structural seismic evaluation considering soil-structure interactions", Adv. Struct. Eng., 23(14), 3024-3036. https://doi.org/10.1177/1369433220927267.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
- Yazdanian, M., Razavi, V. and Mashal, M. (2016), "Study on the dynamic behavior of cylindrical steel liquid storage tanks using finite element method", J. Theoret. Appl. Vib. Acoust., 2(2), 145-166. https://doi.org/10.22064/TAVA.2016.21833.
- Zeybek, O., Celik, A. and Ozkilic, Y. (2023), "Buckling of axially loaded shell structures made of stainless steel", Steel Compos. Struct., 48(6), 681. https://doi.org/10.12989/scs.2023.48.6.681.
- Zeybek, O., CELIK, A. and Ozkilic, Y. (2023), "Buckling of axially loaded shell structures made of stainless steel", Steel Compos. Struct., 48(6), 681. https://doi.org/10.12989/scs.2023.48.6.681.
- Zeybek, O., Topkaya, C. and Rotter, J.M. (2019), "Stress resultants for wind girders in open-top cylindrical steel tanks", Eng. Struct., 196, 109347. https://doi.org/10.1016/j.engstruct.2019.109347.
- Zhang, H., El Ansary, A.M. and Zhou, W. (2022), "Prediction of buckling capacity of liquid-filled steel conical tanks considering field-measured imperfections", Eng. Struct., 262, 114351. https://doi.org/10.1016/j.engstruct.2022.114351.