• Title/Summary/Keyword: retrofitting of tanks

Search Result 2, Processing Time 0.017 seconds

Buckling conditions and strengthening by CFRP composite of cylindrical steel water tanks under seismic load

  • Ali Ihsan Celik;Mehmet Metin Kose;Ahmet Celal Apay
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.97-111
    • /
    • 2024
  • In this paper, buckling conditions and retrofitting of cylindrical steel water storage tanks with different roof types and wall thicknesses were investigated by using finite element method. Four roof types of cylindrical steel tanks which are open-top, flat-closed, conical-closed and torispherical-closed and three wall thicknesses of 4, 6 and 8 mm were considered in FE modeling of cylindrical steel tanks. The roof shapes significantly affect load distribution on the tank shell under the seismic action. Composite FRP materials are widely used for winding thin-walled cylindrical steel structures. The retrofitting efficiency of cylindrical steel water tank is tested under the seismic loading with the externally bonded CFRP laminates. In retrofitting of cylindrical steel tank, the CFRP composite material coating method was used to improve of seismic performance of cylindrical steel tanks. ANSYS software was used to analyze the cylindrical steel tanks and maximum equivalent (von-Mises) and directional deformation were obtained. Equivalent (von-Mises) stresses significantly decreased due to the coating of the tank shell with FRP composite material. In thin-walled steel structures, excessive stress causes buckling and deformations. Therefore, retrofitting led to decrease in stress, reductions in directional and buckling deformation of the open-top, flat-closed, conical-closed and torispherical-closed tanks.

Enhanced Stabilization of Carcasses by Retrofitting Burial Sites to Bioreactor (매몰지 생물반응조 개조를 통한 사체의 안정화 촉진)

  • Kim, Geonha;Jeon, Haeseong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.679-684
    • /
    • 2014
  • Many burial sites were constructed to suppress the spread of foot and mouth disease during outbreak. Defected burial sites were removed when leachate leak is presumed and carcasses were moved to the circular storage tanks. However, carcasses were not decomposed possibly due to low water content, low microbial activities, and poor mixing. In this research, storage tank containing carcasses in it was modified to bioreactor to accelerate stabilization. Liquids with nutrients were added and circulated to maintain the optimum water content while extraneous microorganisms were augmented. Settlement was used as the primary index for assessing stabilization rate, and the consolidation theory was utilized to estimate the expected final settlement. 30% of carcasses is expected to be decomposed and removed from the storage tank for five years of bioreactor operation.