Acknowledgement
The authors would like to acknowledge the support from the national natural science foundation of china (Nos.51809227, 52079120).
References
- Aisheh, Y.I.A., Atrushi, D.S., Akeed, M.H., Qaidi, S. and Tayeh, B.A. (2022), "Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC)", Case Stud. Constr. Mater., 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245.
- Al-Attar, A.A., Abdulrahman, M.B., Hamada, H.M. and Tayeh, B.A. (2020), "Investigating the behaviour of hybrid fibrereinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol., 9(2), 1966-1977. https://doi.org/10.1016/j.jmrt.2019.12.029.
- Ansari, F. and Li, Q.B. (1998), "High-strength concrete subjected to triaxial compression", ACI Mater. J. 95(6), 747-755. https://doi.org/10.14359/420.
- ASTM (1999), Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA.
- ASTM C1018 (1997), Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber Reinforced Concrete (Using Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, USA.
- Babanajad, S.K., Farnam, Y. and Shekarchi, M. (2012), "Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume", Constr. Build. Mater., 29, 215-229. https://doi.org/10.1016/j.conbuildmat.2011.08.094.
- Bao, J., Wang, L., Zhang, Q., Liang, Y., Jiang, P. and Song, Y. (2018), "Combined effects of steel fiber and strain rate on the biaxial compressive behavior of concrete", Constr. Build. Mater., 187, 394-405. https://doi.org/10.1016/j.conbuildmat.2018.07.203.
- Candappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).
- Chen, Y., Li, P., Ye, P., Li, H. and Liang, X. (2022), "Experimental investigation on the mechanical behavior of polyvinyl alcohol fiber recycled aggregate concrete under triaxial compression", Constr. Build. Mater., 350, 128825. https://doi.org/10.1016/j.conbuildmat.2022.128825.
- David, G., Laura, V., Vincent, L., Peter, G., Jacqueline, S., JeanPierre, R., Ahmed, L. and Gilles, P.C. (2015), "Mesoscale analysis of failure in quasi-brittle materials: Comparison between lattice model and acoustic emission data", Int. J. Numer. Anal. Method. Geomech., 39(15), 1639-1664. https://doi.org/10.1002/nag.2363.
- Ding, Y., Zhang, Y. and Thomas, A. (2009), "The investigation on strength and flexural toughness of fibre cocktail reinforced selfcompacting high performance concrete", Constr. Build. Mater. 23(1), 448-452. https://doi.org/10.1016/j.conbuildmat.2007.11.006.
- Fattouh, M.S., Tayeh, B.A., Agwa, I.S. and Elsayed, E.K. (2023), "Improvement in the flexural behaviour of road pavement slab concrete containing steel fibre and silica fume", Case Stud. Const. Mater., 18, e01720. https://doi.org/10.1016/j.cscm.2022.e01720.
- Guo, W., Fan, W., Shao, X., Shen, D. and Chen, B. (2018), "Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations", Compos. Struct., 185, 307-326. https://doi.org/10.1016/j.compstruct.2017.11.022.
- Haeri, H., Sarfarazi, V. and Zhu, Z.M. (2017), "Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)", Comput. Concrete, 19(1), 99-110. https://doi.org/10.12989/cac.2017.19.1.099.
- Haido, J.H., Abdul-Razzak, A.A., Al-Tayeb, M.M., Bakar, B.H., Yousif, S.T. and Tayeh, B.A. (2021), "Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios", Adv. Concrete Constr., 11(2), 89-98. https://doi.org/10.12989/acc.2021.11.2.089.
- Hakeem, I.Y., Amin, M., Abdelsalam, B.A., Tayeh, B.A., Althoey, F. and Agwa, I.S. (2022), "Effects of nano-silica and microsteel fiber on the engineering properties of ultra-high performance concrete", Struct. Eng. Mech., 82(3), 295-312. https://doi.org/10.12989/sem.2022.82.3.295.
- Hasgul, U., Turker, K., Birol, T. and Yavas, A. (2018), "Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios", Struct. Concrete, 19(6), 1577-1590. https://doi.org/10.1002/suco.201700089.
- Kanakubo, T. (2006), "Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites", J. Adv. Concrete Technol., 4(1), 3-17. https://doi.org/10.3151/jact.4.3.
- Khan, M.Z.N., Hao, Y., Hao, H., Shaikh, F.U.A. and Liu, K. (2018), "Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests", Constr. Build. Mater., 185(10), 338-353. https://doi.org/10.1016/j.conbuildmat.2018.07.092.
- Li, P., Li, S., Zhu, W. and Lu, Y. (2022), "Experimental research on the mechanical properties of steel fiber recycled aggregate concrete subjected to true triaxial compression", Constr. Build. Mater., 339, 127579. http://doi.org/10.1016/j.conbuildmat.2022.127579.
- Lu, X., Cheng, T. and Thomas, H. (2006), "Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression", Cement Concrete Res., 36(9), 1679-1685. https://doi.org/10.1016/j.cemconres.2006.05.021.
- Mansour, W., Tayeh, B.A. and Tam, L.H. (2022), "Finite element analysis of shear performance of UHPFRC-encased steel composite beams: Parametric study", Eng. Struct., 271, 114940. https://doi.org/10.1016/j.engstruct.2022.114940.
- Maraq, M.A.A., Tayeh, B.A., Ziara, M.M. and Alyousef, R. (2021), "Flexural behavior of RC beams strengthened with steel wire mesh and self-compacting concrete jacketing - experimental investigation and test results", J. Mater. Res. Technol., 10, 1002-1019. https://doi.org/10.1016/j.jmrt.2020.12.069.
- Meng, K., Xu, L. and Chi, Y. (2021), "Experimental investigation on the mechanical behavior of hybrid steel-polypropylene fiber reinforced concrete under conventional triaxial cyclic compression", Constr. Build. Mater., 291, 123262. https://doi.org/10.1016/j.conbuildmat.2021.123262.
- Naaman, A.E. and Reinhardt, H.W. (2006), "Proposed classification of HPFRC composites based on their tensile response", Mater. Struct., 39, 547-555. https://doi.org/10.1617/s11527-006-9103-2.
- Perumal, R. (2014), "Performance and modeling of highperformance steel fiber reinforced concrete under impact loads", Comput Concrete, 13(2), 255-270. http://doi.org/10.12989/cac.2014.13.2.255.
- Potyondy, D.O. (2007), "Simulating stress corrosion with a bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 44(5), 677-691. http://doi.org/10.1016/j.ijrmms.2006.10.002.
- Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2019), "A comparative study of flexural and shear behavior of ultra-highperformance fiber-reinforced concrete beams", Adv. Struct. Eng., 22(7), 1727-1738. http://doi.org/10.1177/1369433218823848.
- Ren, G.M., Wu, H., Fang, Q., Liu, J.Z. and Gong, Z.M. (2016), "Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses", Constr. Build. Mater., 113, 1-14. http://doi.org/10.1016/j.conbuildmat.2016.02.227.
- Ren, J., Tian, Z. and Bu, J. (2018), "Simulating tensile and compressive failure process of concrete with a user-defined bonded-particle model", Int. J. Concrete Struct. Mater., 12(1), 56. http://doi.org/10.1186/s40069-018-0292-1.
- Richard, P. and Cheyrezy, M. (1994), "Reactive powder concretes with high ductility and 200-800 MPa compressive strength", ACI Spec. Publ., 144(24), 507-518. https://doi.org/10.14359/4536.
- Sirijaroonchai, K., El-Tawil, S. and Parra-Montesinos, G. (2010), "Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading", Cement Concrete Compos., 32(1), 62-72. https://doi.org/10.1016/j.cemconcomp.2009.09.003.
- Song, Z., Konietzky, H. and Herbst, M. (2019), "Threedimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete", Constr. Build. Mater., 225, 661-677. https://doi.org/10.1016/j.conbuildmat.2019.07.260.
- Soranakom, C. and Mobasher, B. (2008), "Correlation of tensile and flexural responses of strain softening and strain hardening cement composites", Cement Concrete Compos., 30, 465-477. https://doi.org/10.1016/j.cemconcomp.2008.01.007.
- Suhaendi, S.L. and Horiguchi, T. (2006), "Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition", Cement Concrete Res., 36(9), 1672-1678. https://doi.org/10.1016/j.cemconres.2006.05.006.
- Tayeh, B.A., Akeed, M.H., Qaidi, S. and Bakar, B.A. (2022), "Ultra-high-performance concrete: Impacts of steel fibre shape and content on flowability, compressive strength and modulus of rupture", Case Stud. Constr. Mater., 17, e01615. https://doi.org/10.1016/j.cscm.2022.e01615.
- Tayeh, B.A., Maraq, M.A.A. and Ziara, M.M. (2020), "Flexural performance of reinforced concrete beams strengthened with self-compacting concrete jacketing and steel welded wire mesh", Struct., 28, 2146-2162. https://doi.org/10.1016/j.istruc.2020.10.035.
- Wang, Y.Z., Wang, Y.B., Zhao, Y.Z., Li, G.Q. and Li, H. (2020), "Experimental study on ultra-high performance concrete under triaxial compression", Constr. Build. Mater., 263(10), 10225. https://doi.org/10.1016/j.conbuildmat.2020.120225.
- Wu, L., Wang, Z., Liu, D., Zhu, H., Lu, Y. and Lin, L. (2018), "Effects of confining pressure and steel fiber content on mechanical properties of reactive powder concrete", J. Build. Mater., 21(2), 208-215. https://doi.org/10.3969/j.issn.1007-9629.2018.02.006.
- Yoo, D.Y. and Banthia, N. (2016), "Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review", Cement Concrete Compos., 73(1), 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001.
- Zhang, K., Zhao, L.Y., Ni, T., Zhu, Q. and Fan, Y.H. (2019), "Experimental investigation and multiscal modelling of reactive powder cement pastes subject to traxial compressive stresses", Constr. Build. Mater., 224, 242-254. https://doi.org/10.1016/j.conbuildmat.2019.07.049.
- Zhang, S.S., Wang, J.J., Lin, G., Yu, T. and Fernando, D. (2023), "Stress-strain models for ultra-high performance concrete (UHPC), and ultra-high performance fiber-reinforced concrete (UHPFRC), under triaxial compression", Constr. Build. Mater., 370, 130658. https://doi.org/10.1016/j.conbuildmat.2023.130658.
- Zhu, X., Chen, X., Zhang, N., Wang, X. and Diao, H. (2021), "Experimental and numerical research on triaxial mechanical behavior of self-compacting concrete subjected to freeze-thaw damage", Constr. Build. Mater., 288, 123110. https://doi.org/10.1016/j.conbuildmat.2021.123110.