DOI QR코드

DOI QR Code

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu (College of Hydraulic Science and Engineering, Yangzhou University) ;
  • Xu Huiying (College of Hydraulic Science and Engineering, Yangzhou University) ;
  • Wu Xinyu (College of Hydraulic Science and Engineering, Yangzhou University) ;
  • Chen Xudong (College of Civil and Transportation Engineering, Hohai University) ;
  • Xu Bo (College of Hydraulic Science and Engineering, Yangzhou University)
  • Received : 2022.01.06
  • Accepted : 2023.07.04
  • Published : 2024.08.25

Abstract

In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.

Keywords

Acknowledgement

The authors would like to acknowledge the support from the national natural science foundation of china (Nos.51809227, 52079120).

References

  1. Aisheh, Y.I.A., Atrushi, D.S., Akeed, M.H., Qaidi, S. and Tayeh, B.A. (2022), "Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC)", Case Stud. Constr. Mater., 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245. 
  2. Al-Attar, A.A., Abdulrahman, M.B., Hamada, H.M. and Tayeh, B.A. (2020), "Investigating the behaviour of hybrid fibrereinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol., 9(2), 1966-1977. https://doi.org/10.1016/j.jmrt.2019.12.029. 
  3. Ansari, F. and Li, Q.B. (1998), "High-strength concrete subjected to triaxial compression", ACI Mater. J. 95(6), 747-755. https://doi.org/10.14359/420. 
  4. ASTM (1999), Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA. 
  5. ASTM C1018 (1997), Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber Reinforced Concrete (Using Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, USA. 
  6. Babanajad, S.K., Farnam, Y. and Shekarchi, M. (2012), "Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume", Constr. Build. Mater., 29, 215-229. https://doi.org/10.1016/j.conbuildmat.2011.08.094. 
  7. Bao, J., Wang, L., Zhang, Q., Liang, Y., Jiang, P. and Song, Y. (2018), "Combined effects of steel fiber and strain rate on the biaxial compressive behavior of concrete", Constr. Build. Mater., 187, 394-405. https://doi.org/10.1016/j.conbuildmat.2018.07.203. 
  8. Candappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209). 
  9. Chen, Y., Li, P., Ye, P., Li, H. and Liang, X. (2022), "Experimental investigation on the mechanical behavior of polyvinyl alcohol fiber recycled aggregate concrete under triaxial compression", Constr. Build. Mater., 350, 128825. https://doi.org/10.1016/j.conbuildmat.2022.128825. 
  10. David, G., Laura, V., Vincent, L., Peter, G., Jacqueline, S., JeanPierre, R., Ahmed, L. and Gilles, P.C. (2015), "Mesoscale analysis of failure in quasi-brittle materials: Comparison between lattice model and acoustic emission data", Int. J. Numer. Anal. Method. Geomech., 39(15), 1639-1664. https://doi.org/10.1002/nag.2363. 
  11. Ding, Y., Zhang, Y. and Thomas, A. (2009), "The investigation on strength and flexural toughness of fibre cocktail reinforced selfcompacting high performance concrete", Constr. Build. Mater. 23(1), 448-452. https://doi.org/10.1016/j.conbuildmat.2007.11.006. 
  12. Fattouh, M.S., Tayeh, B.A., Agwa, I.S. and Elsayed, E.K. (2023), "Improvement in the flexural behaviour of road pavement slab concrete containing steel fibre and silica fume", Case Stud. Const. Mater., 18, e01720. https://doi.org/10.1016/j.cscm.2022.e01720. 
  13. Guo, W., Fan, W., Shao, X., Shen, D. and Chen, B. (2018), "Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations", Compos. Struct., 185, 307-326. https://doi.org/10.1016/j.compstruct.2017.11.022. 
  14. Haeri, H., Sarfarazi, V. and Zhu, Z.M. (2017), "Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)", Comput. Concrete, 19(1), 99-110. https://doi.org/10.12989/cac.2017.19.1.099. 
  15. Haido, J.H., Abdul-Razzak, A.A., Al-Tayeb, M.M., Bakar, B.H., Yousif, S.T. and Tayeh, B.A. (2021), "Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios", Adv. Concrete Constr., 11(2), 89-98. https://doi.org/10.12989/acc.2021.11.2.089. 
  16. Hakeem, I.Y., Amin, M., Abdelsalam, B.A., Tayeh, B.A., Althoey, F. and Agwa, I.S. (2022), "Effects of nano-silica and microsteel fiber on the engineering properties of ultra-high performance concrete", Struct. Eng. Mech., 82(3), 295-312. https://doi.org/10.12989/sem.2022.82.3.295. 
  17. Hasgul, U., Turker, K., Birol, T. and Yavas, A. (2018), "Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios", Struct. Concrete, 19(6), 1577-1590. https://doi.org/10.1002/suco.201700089. 
  18. Kanakubo, T. (2006), "Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites", J. Adv. Concrete Technol., 4(1), 3-17. https://doi.org/10.3151/jact.4.3. 
  19. Khan, M.Z.N., Hao, Y., Hao, H., Shaikh, F.U.A. and Liu, K. (2018), "Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests", Constr. Build. Mater., 185(10), 338-353. https://doi.org/10.1016/j.conbuildmat.2018.07.092. 
  20. Li, P., Li, S., Zhu, W. and Lu, Y. (2022), "Experimental research on the mechanical properties of steel fiber recycled aggregate concrete subjected to true triaxial compression", Constr. Build. Mater., 339, 127579. http://doi.org/10.1016/j.conbuildmat.2022.127579. 
  21. Lu, X., Cheng, T. and Thomas, H. (2006), "Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression", Cement Concrete Res., 36(9), 1679-1685. https://doi.org/10.1016/j.cemconres.2006.05.021. 
  22. Mansour, W., Tayeh, B.A. and Tam, L.H. (2022), "Finite element analysis of shear performance of UHPFRC-encased steel composite beams: Parametric study", Eng. Struct., 271, 114940. https://doi.org/10.1016/j.engstruct.2022.114940. 
  23. Maraq, M.A.A., Tayeh, B.A., Ziara, M.M. and Alyousef, R. (2021), "Flexural behavior of RC beams strengthened with steel wire mesh and self-compacting concrete jacketing - experimental investigation and test results", J. Mater. Res. Technol., 10, 1002-1019. https://doi.org/10.1016/j.jmrt.2020.12.069. 
  24. Meng, K., Xu, L. and Chi, Y. (2021), "Experimental investigation on the mechanical behavior of hybrid steel-polypropylene fiber reinforced concrete under conventional triaxial cyclic compression", Constr. Build. Mater., 291, 123262. https://doi.org/10.1016/j.conbuildmat.2021.123262. 
  25. Naaman, A.E. and Reinhardt, H.W. (2006), "Proposed classification of HPFRC composites based on their tensile response", Mater. Struct., 39, 547-555. https://doi.org/10.1617/s11527-006-9103-2. 
  26. Perumal, R. (2014), "Performance and modeling of highperformance steel fiber reinforced concrete under impact loads", Comput Concrete, 13(2), 255-270. http://doi.org/10.12989/cac.2014.13.2.255. 
  27. Potyondy, D.O. (2007), "Simulating stress corrosion with a bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 44(5), 677-691. http://doi.org/10.1016/j.ijrmms.2006.10.002. 
  28. Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2019), "A comparative study of flexural and shear behavior of ultra-highperformance fiber-reinforced concrete beams", Adv. Struct. Eng., 22(7), 1727-1738. http://doi.org/10.1177/1369433218823848. 
  29. Ren, G.M., Wu, H., Fang, Q., Liu, J.Z. and Gong, Z.M. (2016), "Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses", Constr. Build. Mater., 113, 1-14. http://doi.org/10.1016/j.conbuildmat.2016.02.227. 
  30. Ren, J., Tian, Z. and Bu, J. (2018), "Simulating tensile and compressive failure process of concrete with a user-defined bonded-particle model", Int. J. Concrete Struct. Mater., 12(1), 56. http://doi.org/10.1186/s40069-018-0292-1. 
  31. Richard, P. and Cheyrezy, M. (1994), "Reactive powder concretes with high ductility and 200-800 MPa compressive strength", ACI Spec. Publ., 144(24), 507-518. https://doi.org/10.14359/4536. 
  32. Sirijaroonchai, K., El-Tawil, S. and Parra-Montesinos, G. (2010), "Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading", Cement Concrete Compos., 32(1), 62-72. https://doi.org/10.1016/j.cemconcomp.2009.09.003. 
  33. Song, Z., Konietzky, H. and Herbst, M. (2019), "Threedimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete", Constr. Build. Mater., 225, 661-677. https://doi.org/10.1016/j.conbuildmat.2019.07.260. 
  34. Soranakom, C. and Mobasher, B. (2008), "Correlation of tensile and flexural responses of strain softening and strain hardening cement composites", Cement Concrete Compos., 30, 465-477. https://doi.org/10.1016/j.cemconcomp.2008.01.007. 
  35. Suhaendi, S.L. and Horiguchi, T. (2006), "Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition", Cement Concrete Res., 36(9), 1672-1678. https://doi.org/10.1016/j.cemconres.2006.05.006. 
  36. Tayeh, B.A., Akeed, M.H., Qaidi, S. and Bakar, B.A. (2022), "Ultra-high-performance concrete: Impacts of steel fibre shape and content on flowability, compressive strength and modulus of rupture", Case Stud. Constr. Mater., 17, e01615. https://doi.org/10.1016/j.cscm.2022.e01615. 
  37. Tayeh, B.A., Maraq, M.A.A. and Ziara, M.M. (2020), "Flexural performance of reinforced concrete beams strengthened with self-compacting concrete jacketing and steel welded wire mesh", Struct., 28, 2146-2162. https://doi.org/10.1016/j.istruc.2020.10.035. 
  38. Wang, Y.Z., Wang, Y.B., Zhao, Y.Z., Li, G.Q. and Li, H. (2020), "Experimental study on ultra-high performance concrete under triaxial compression", Constr. Build. Mater., 263(10), 10225. https://doi.org/10.1016/j.conbuildmat.2020.120225. 
  39. Wu, L., Wang, Z., Liu, D., Zhu, H., Lu, Y. and Lin, L. (2018), "Effects of confining pressure and steel fiber content on mechanical properties of reactive powder concrete", J. Build. Mater., 21(2), 208-215. https://doi.org/10.3969/j.issn.1007-9629.2018.02.006. 
  40. Yoo, D.Y. and Banthia, N. (2016), "Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review", Cement Concrete Compos., 73(1), 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001. 
  41. Zhang, K., Zhao, L.Y., Ni, T., Zhu, Q. and Fan, Y.H. (2019), "Experimental investigation and multiscal modelling of reactive powder cement pastes subject to traxial compressive stresses", Constr. Build. Mater., 224, 242-254. https://doi.org/10.1016/j.conbuildmat.2019.07.049. 
  42. Zhang, S.S., Wang, J.J., Lin, G., Yu, T. and Fernando, D. (2023), "Stress-strain models for ultra-high performance concrete (UHPC), and ultra-high performance fiber-reinforced concrete (UHPFRC), under triaxial compression", Constr. Build. Mater., 370, 130658. https://doi.org/10.1016/j.conbuildmat.2023.130658. 
  43. Zhu, X., Chen, X., Zhang, N., Wang, X. and Diao, H. (2021), "Experimental and numerical research on triaxial mechanical behavior of self-compacting concrete subjected to freeze-thaw damage", Constr. Build. Mater., 288, 123110. https://doi.org/10.1016/j.conbuildmat.2021.123110.