DOI QR코드

DOI QR Code

Quantity Estimation Method for High-Performance Insulated Wall Panels with Complex Details Using BIM Family Libraries

BIM의 패밀리 라이브러리를 이용한 복잡한 상세를 갖는 고단열 벽체 판넬의 물량 산출 방법

  • Mun, Ju-Hyun (Department of Architectural Engineering, Kyonggi University)
  • 문주현
  • Received : 2024.05.14
  • Accepted : 2024.07.10
  • Published : 2024.08.20

Abstract

This study investigates the effectiveness of Building Information Modeling(BIM) software, specifically SketchUp and Revit, in reducing errors during quantity take-off(QTO) for complex building elements. While 3D modeling offers advantages, existing software may not fully account for manufacturing discrepancies, such as variations in concrete cover thickness and reinforcing bar radius. To address this limitation, this research proposes a BIM-based QTO method for high-insulation wall panels with intricate details. The method utilizes a BIM family library, focusing on key parameters like concrete cover thickness and inner radius of shear reinforcement. A case study compared the cross-sectional details of a wall panel modeled in Revit with the actual manufactured specimen. The analysis revealed a 12% reduction in modeled concrete cover thickness and a 1.27 times larger modeled inner radius of the shear bar compared to the real-world values. The proposed method incorporates these manufacturing variations into the Revit model of the high-insulation wall panel. Software like Navisworks facilitates the identification and correction of any material interferences arising from these adjustments. Furthermore, the method employs a unit wall concept(1m2) to account for the volume of various materials, including insulation and splice sleeves at joints. This allows for the identification of a similar existing family within the BIM library(e.g., "Double RC wall with embedded insulation") that reflects the actual material quantities used in the wall panel. By incorporating these manufacturing-induced variations, the proposed method offers a more accurate QTO process for complex high-insulation wall panels. The "Double RC wall with embedded insulation" family within the Revit program serves as a valuable tool for material quantity estimation in such scenarios.

이 연구의 목적은 복잡한 상세를 갖는 부재의 생산공정에서 발생하는 물량산출 오차를 최소화할 수 있는 BIM의 패밀리 라이브러리를 이용한 고단열 벽체 판넬의 물량산출 방법을 제시하는데에 있다. 주요변수는 공장의 생산공정에서 주로 발생할 수 있는 오차인 콘크리트 피복두께와 철근 구부림의 최소 내면 반지름으로 설정하였다. Revit BIM 프로그램으로 모델링된 단면 보다 생산현장에서 제작된 고단열 벽체 판넬의 콘크리트 피복두께는 약 12% 작았으며 철근 구부림의 최소 내면 반지름은 약 1.27배 컸다. 이러한 변화를 Revit BIM 프로그램을 이용한 고단열 벽체 판넬의 모델링에 반영하고 Navisworks를 이용하여 구성된 재료들의 간섭 체크 및 보정하였다. 특히, 각 재료들의 체적 등가 개념을 이용하여 1m 단위의 벽체로 환산하였으며, 이때 수직 및 수평접합에 설치되는 단열재와 스플라이스 슬리브도 포함하였다. 환산된 1m 단위의 벽체는 각 재료들의 물량 측면에서 유사한 패밀리 라이브러리의 "단열재가 삽입된 이중 RC 벽체"로 결정될 수 있었다. 제시된 레빗 프로그램에 내장된 패밀리 라이브러리의 "단열재가 삽입된 이중 RC 벽체"는 공장의 생산공정에서 발생하는 제조오차를 고려하면서 복잡한 단면을 가지고 있는 고단열 벽체 판넬 상세에서 각 재료들의 물량을 산출하는데에 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea Government(MSIT)(No. NRF-2022R1A2B5B03002476) and Collabo R&D between Industry- Academia-Research Institute(S3302388) funded by the Ministry of SMEs.

References

  1. Kim JY, Park SH, Kang BC. Open BIM application plan for digitalization of safety inspection of small-scale decrepit buildings. Korean Journal of Computational Design and Engineering. 2023 Sep;28(3):189-99. https://doi.org/10.7315/CDE.2023.189
  2. Bang JS, Tae SH, Kim TH, Roh SH. A study on developing BIM template based on public procurement service standard construction code to improve the efficiency in carbon dioxide assessment of buildings. Journal of the Architectural Institute of Korea. 2013 Apr;29(4):69-76.
  3. Yen YN, Weng KH, Huang HY. Study on information management for the conservation of traditional chinese architectural heritage-3D modelling and meta data representation. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2013 Jul;5:331-6. https://doi.org/10.5194/isprsannals-II-5-W1-331-2013
  4. Mun JH, Yoon HS, Kim JW, Eom BH. Modeling of precast concrete shear walls BIM program. Journal of The Korea Institute of Building Construction. 2022 Oct;22(5):451-62. https://doi.org/10.5345/JKIBC.2022.22.5.451
  5. Kang JW, Kim JH, Park JS, Yoon HT. Dynamo utilization for reinforcement of revit-based structural modeling. Journal of the Korea Academia-Industrial cooperation Society. 2022 Nov;23(11):267-75. https://doi.org/10.5762/KAIS.2022.23.11.267
  6. Yu ES, Ahn YH, Choi JS. A research on the generation of BIM data requirement property information for green building certification. Korean Journal of Computational Design and Engineering. 2023 Sep;28(3):212-21. https://doi.org/10.7315/CDE.2023.212
  7. Kim MG, Um DY. 3D Architecture modeling and quantity estimation using SketchUp. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology. 2017 Jun;7(6):701-8. http://dx.doi.org/10.35873/ajmahs.2017.7.6.065
  8. Yun SH, Kim SC. Basic research on BIM-based quantity take-off guidelines. Architectural Research. 2013 Jun;15(2):103-9. https://dx.doi.org/10.5659/AIKAR.2013.15.2.103
  9. Elyano MR, Yuliastuti. Analysis of clash detection and qauntity take-off using BIM for warehouse construction. International Conference on Eco Engineering Development. 2020 Nov;794:1-10. http://dx.doi.org/10.1088/1755-1315/794/1/012012
  10. Hasan R, Rakib MFH, Rahman M. Quantification of construction waste through BIM. Journal of Technology Management and Business. 2022 Jun;9(1):82-77. https://doi.org/10.30880/jtmb.2022.09.01.007
  11. Autodesk, Inc. Autodesk Revit for Windows. Ver. 2024. San Francisco(USA): Autodesk, Inc; 2024.
  12. Qiu N, He K, Qiu Z, Gui W, Decininck G. a BIM- centric design and analysis software for Building Integrated Photovoltaics, Automation in Construction. Automation in Construction. 2018 Mar;87:127-37. https://doi.org/10.1016/j.autcon.2017.10.020
  13. Yoon JD, Cho HS, Lee JH, Shin JY, Kim ES. A comparison of quantity take-offs of RC structures based on BIM. Journal of the Computational Structural Engineering Institute of Korea. 2023 Feb;33(1):35-44. https://doi.org/10.7734/COSEIK.2020.33.1.35
  14. Lee HM, Lee JH, Moon HS. Essential functional criteria for BIM-based digital collaboration platforms construction industry. Journal of the Architectural Institute of Korea. 2024 Mar;40(3):23-34. https://doi.org/10.5659/JAIK.2024.40.3.23
  15. Timble, Inc. SketchUp Pro. Ver. 2024. WE: Trimble, Inc; 2024.
  16. Yang KH. Evaluation on flexural response of precast concrete thermal-meta panels. Journal of the Architectural Institute fo Korea. 2022 Aug;38(8):247-54. https://doi.org/10.5659/JAIK.2022.38.8.237
  17. Korea Concrete Institute. Design of concrete structures(KDS 14 20 00). Seoul (Korea): Kimoondang. 2022. 1-37 p.