DOI QR코드

DOI QR Code

Taxonomic Characteristics of Twelve New Yeast Species Isolated in 2023 Not Listed in the National Species List of Korea

  • Jung-Woo Ko (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Ye-Jin Kim (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Eun-Jeong Kim (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Sang-Su Lee (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Seong-Min Choi (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Chorong Ahn (Species Diversity Research Division, National Institute of Biological Resources) ;
  • Chang-Mu Kim (Species Diversity Research Division, National Institute of Biological Resources) ;
  • Cheon-Seok Park (Department of Food Science and Biotechnology, Kyung Hee University)
  • Received : 2023.12.14
  • Accepted : 2024.03.26
  • Published : 2024.03.31

Abstract

With a history spanning 9,000 years, yeast has played a central role in the traditional production of fermented foods, particularly alcohol and bakery. Recent research has highlighted the versatility of yeast in various industries, including the production of bioactive compounds, bioethanol, pigments, and enzymes, and as a host for molecular biology studies. In Korea, yeast isolation has traditionally focused on traditional fermented foods such as soybean paste. However, there is a growing trend in the isolation and characterization of yeasts from natural environments such as flowers and fruits for industrial applications. In this study, we isolated and identified 12 yeasts from various natural environments in Korea, including botanical gardens and parks that are not listed on the National Species List of Korea (NSLK). These newly discovered species included Sakaguchia oryzae, Cystobasidium raffinophilum, Meira argovae, Kazachstania humilis, Meyerozyma smithsonii, Anthracocystis trispicatae, Naganishia brisbanensis, Tremella yokohamensis, Kwoniella shandongensis, Kwoniella newhampshirensis, Aureobasidium proteae, and Rhodotorula dairenensis.

Keywords

Acknowledgement

This study was supported by the National Institute of Biological Resources (NIBR202203112 and NIBR202304104) under the Ministry of Environment, Republic of Korea.

References

  1. Kurtzman CP, Fell JW, Boekhout T. The yeasts: a taxonomic study. Amsterdam: Elsevier; 2011. p. 3-5.
  2. Min JH, Hyun SH, Kang MG, Lee HB, Kim CM, Kim HK, Lee JS. Isolation and identification of yeasts from wild flowers of Daejeon city and Chungcheongnam-do in Korea. Korean J Mycol 2012;40:141-4. https://doi.org/10.4489/KJM.2012.40.3.141
  3. Kim HK, Kim JY, Han SM, Kim C, Lee JS. Microbiological characteristics and physiological functionalities of unrecorded wild yeast strains in the soils of Hajodae and Gyungpodae beaches in Korea. Korean J Mycol 2019;47:249-58. https://doi.org/10.4489/KJM.20190029
  4. Ahn C, Kim M, Kim C. Comprehensive review of indigenous yeast species in Korea: a literature and culture collection analysis. Korean J Mycol 2021;49:211-42. https://doi.org/10.4489/KJM.20210020
  5. Jeong DM, Kim HJ, Jeon MS, Yoo SJ, Moon HY, Jeon EJ, Jeon CO, Eyun SI, Kang HA. Genomic and functional features of yeast species in Korean traditional fermented alcoholic beverage and soybean products. FEMS Yeast Res 2023;23:foac066.
  6. Jung SJ, Yeo SH, Mun JY, Choi HS, Baek SY. Characteristics of wild yeast isolated from non-sterilized Makgeolli in Korea. Korean J Food Preserv 2017;24:1043-51. https://doi.org/10.11002/kjfp.2017.24.7.1043
  7. Han SM, Kim JY, Kin C, Lee JS. Characteristics of unrecorded wild yeasts obtained from the soil of spices plant fields and its physiological functionality. Korean J Mycol 2019;47:75-81. https://doi.org/10.4489/KJM.20190009
  8. Hyun SH, Lee HB, Kim C, Lee JS. New records of yeasts from wild flowers in coast near areas and inland areas, Korea. Korean J Mycol 2013;41:74-80. https://doi.org/10.4489/KJM.2013.41.2.74
  9. Ko JW, Kim YJ, Park CS. Taxonomic and microbiological report on seven yeast species unrecorded in the national species list of Korea. Korean J Mycol 2023;51:287-306. https://doi.org/10.4489/KJM.20230031
  10. Hyun SH, Min JH, Kim SA, Lee JS, Kim HK. Yeasts associated with fruits and blossoms collected from Hanbat Arboretum, Daejeon, Korea. Korean J Mycol 2014;42:178-82. https://doi.org/10.4489/KJM.2014.42.2.178
  11. Kumar S, Stecher G, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547-9. https://doi.org/10.1093/molbev/msy096
  12. Kurtzman CP, Fell JW, Beokhout T. Methods for isolation, phenotypic characterization and maintenance of yeasts. Amsterdam: Elsevier; 2011. p. 87-110.
  13. Goto S. On a new yeast genus Naganishia. J Ferment Technol 1963;41:459-62.
  14. Patrick Leo, Marcus de Melo Texeira, Atul M. Chander, Nitin K. Singh, Anna C. Simpson, Andrey Yurkov, Fathi Karouia, Jason E. Stajich, Christopher E. Mason & Kasthuri Venkateswaran. Genomic characterization and radiation tolerance of Naganishia kalamii sp. nov. and Cystobasidium onofrii sp. nov. from Mars 2020 mission assembly facilities. IMA Fungus. 2023
  15. Sathiyamoorthi E, Dikshit PK, Kumar P, Kim BS. Co-fermentation of agricultural and industrial waste by Naganishia albida for microbial lipid production in fed-batch fermentation. J Chem Technol Biotechnol 2020;95:813-21. https://doi.org/10.1002/jctb.6271
  16. Wang QM, Groenewald M, Takashima M, Theelen B, Han PJ, Liu XZ, Boekhout T, Bai FY. Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 2015;81:27-53. https://doi.org/10.1016/j.simyco.2015.08.002
  17. Wang QM, Yurkov AM, Goker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 2015;81:149-89. https://doi.org/10.1016/j.simyco.2015.12.002
  18. Kot AM, Blazejak S, Kurcz A, Gientka I, Kieliszek M. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 2016;100:6103-17. https://doi.org/10.1007/s00253-016-7611-8
  19. Sampaio JP, Oberwinkler F. Cystobasidium (Lagerheim) Neuhoff (1924), in The yeasts. Amsterdam: Elsevier; 2011 p. 1419-22.
  20. Li AH, Yuan FX, Groenewald M, Bensch K, Yurkov AM, Li K, Han PJ, Guo LD, Aime MC, Sampaio JP, et al. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Stud Mycol 2020;96:17-140. https://doi.org/10.1016/j.simyco.2020.01.002
  21. Kaline dos Santos Duarte C, da Silva MNP, Sampaio EBT, Teles VR, da Silva KFS, Queiroz AC, Oliveira AC, Alexandre Moreira MS, Rosa LH, Duarte AWF. Yeasts as a source of pigments of biotechnological interest, in advances in yeast biotechnology for biofuels and sustainability. Amsterdam: Elsevier; 2023. p. 297-330.
  22. Chreptowicz K, Marlicka K, Milner-Krawczyk M, Korzeniowska E, Poterala M, Mierzejewska J. Cystobasidium psychroaquaticum as a new promising source of valuable bioactive molecules. Biocatal Agric 2021;33:101985.
  23. Boekhout T, Theelen B, Houbraken J, Robert V, Scorzetti G, Gafni A, Gerson U, Sztejnberg A. Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int J Syst Evol Microbiol 2003;53:1655-64. https://doi.org/10.1099/ijs.0.02434-0
  24. Denchev CM, Denchev TT. Validation of the generic names Meira and Acaromyces and nineteen species names of basidiomycetous yeasts. Mycobiota 2021;11:1-10. https://doi.org/10.12664/mycobiota.2021.11.01
  25. Paz Z, Bilkis I, Gerson U, Kerem Z, Sztejnberg A. Argovin, a novel natural product secreted by the fungus Meira argovae, is antagonistic to mites. Entomol Exp Appl 2011;140:247-253. https://doi.org/10.1111/j.1570-7458.2011.01155.x
  26. Meyer S, Payne R, Yarrow D. Candida berkhout, in the yeasts. Amsterdam: Elsevier; 1998. p. 454-573.
  27. Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP. Candida berkhout (1923), in the yeasts. Amsterdam: Elsevier; 2011. p. 987-1278.
  28. Jacques N, Sarilar V, Urien C, Lopes MR, Morais CG, Uetanabaro APT, Tinsley CR, Rosa CA, Sicard D, Casaregola S. Three novel ascomycetous yeast species of the Kazachstania clade, Kazachstania saulgeensis sp. nov., Kazachstania serrabonitensis sp. nov. and Kazachstania australis sp. nov. Reassignment of Candida humilis to Kazachstania humilis f.a. comb. nov. and Candida pseudohumilis to Kazachstania pseudohumilis f.a. comb. nov. Int J Syst Evol 2016;66:5192-200. https://doi.org/10.1099/ijsem.0.001495
  29. Wittwer AE, Sicard D, Howell KS. Kazachstania humilis. Trends Microbiol 2022;30:1012-3. https://doi.org/10.1016/j.tim.2022.05.007
  30. Kurtzman CP, Suzuki M. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 2010;51:2-14. https://doi.org/10.1007/S10267-009-0011-5
  31. Suh SO, Blackwell M. Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res 2004;5:87-95. https://doi.org/10.1016/j.femsyr.2004.06.001
  32. Yurkov AM, Dlauchy D, Peter G. Meyerozyma amylolytica sp. nov. from temperate deciduous trees and the transfer of five Candida species to the genus Meyerozyma. Int J Syst Evol 2017;67:3977-81. https://doi.org/10.1099/ijsem.0.002232
  33. Rehman R, Ali MI, Ali N, Badshah M, Iqbal M, Jamal A. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. J Hazard Mater 2021;418:126276.
  34. McTaggart AR, Shivas RG, Geering ADW, Vanky K, Scharaschkin T. Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces. Persoonia 2012;29:116-32. https://doi.org/10.3767/003158512X661462
  35. Vanky K, Shivas RG, Athipunyakom P. New smut fungi (Ustilaginomycetes) from Thailand. Mycol Balcanica 2006;3:107-18.
  36. Shivas RG, McTaggart AR, Vanky K. Six new smut fungi (Ustilaginomycotina) from Australia. Mycotaxon 2007;101:349-60.
  37. Rojas EC, Jensen B, Jorgense HJL, Latz MAC, Esteban P, Ding Y, Collinge DB. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol Control 2020;144:104222.
  38. Alshahni MM, Makimura K, Satoh K, Nishiyama Y, Kido N, Sawada T. Cryptococcus yokohamensis sp. nov., a basidiomycetous yeast isolated from trees and a Queensland koala kept in a Japanese zoological park. Int J Syst Evol Microbiol 2011;61:3068-71. https://doi.org/10.1099/ijs.0.027144-0
  39. Malysheva VF, Malysheva EF, Bulakh EM. The genus Tremella (Tremellales, Basidiomycota) in Russia with description of two new species and proposal of one nomenclatural combination. Phytotax 2015;238:40-70. https://doi.org/10.11646/phytotaxa.238.1.2
  40. Ma X, Yang M, He Y, Zhai C, Li C. A review on the production, structure, bioactivities and applications of Tremella polysaccharides. Int Immunopathol Pharmacol 2021;35:20587384211000541.
  41. Chen R, Jiang YM, Wei SC, Wang QM. Kwoniella shandongensis sp. nov., a basidiomycetous yeast isolated from soil and bark from an apple orchard. Int J Syst Evol Microbiol 2012;62:2774-7. https://doi.org/10.1099/ijs.0.039172-0
  42. Baumgardner CA. Sequence and functional analyses of DNA polymerase a enzymes from bacteriophages to yeast [dissertation]. Cullowhee: Western Carolina University; 2021.
  43. Sylvester K, Wang QM, James B, Mendez R, Hulfachor AB, Hittinger CT. Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: a survey and the discovery of eight new yeast species. FEMS Yeast Res 2015;15:1-16. https://doi.org/10.1093/femsyr/fou003
  44. Mookherjee A, Dineshkumar R, Kutty NN, Agarwal T, Sen R, Mitra A, Maiti TK, Maiti MK. Quorum sensing inhibitory activity of the metabolome from endophytic Kwoniella sp. PY016: characterization and hybrid model-based optimization. Appl Microbiol Biotechnol 2018;102:7389-406. https://doi.org/10.1007/s00253-018-9168-1
  45. Taylor JE, Crous PW. Fungi occurring on Proteaceae: new anamorphs for Teratosphaeria, Mycosphaerella and Lembosia, and other fungi associated with leaf spots and cankers of proteaceous hosts. Mycol Res 2000;104:618-36. https://doi.org/10.1017/S0953756299001768
  46. Crous PW, Summerell BA, Swart L, Denman S, Taylor JE, Bezuidenhout CM, Palm ME, Marincowitz S, Groenewald JZ. Fungal pathogens of Proteaceae. Persoonia 2011;27:20-45. https://doi.org/10.3767/003158511X606239
  47. Kutlesa M, Mlinaric-Missoni E, Hatvani L, Voncina D, Simon S, Lepur D, Barsic B. Chronic fungal meningitis caused by Aureobasidium proteae. Diagn Microbiol Infect Dis 2012;73:271-2. https://doi.org/10.1016/j.diagmicrobio.2012.03.007
  48. Yamada Y, Banno I. Fellomyces, a new anamorphic yeast genus for the Q10-equipped organisms whose conidium is freed by an end-break in the sterigma. J Gen Appl Microbiol 1984;30:523-5. https://doi.org/10.2323/jgam.30.523
  49. Rodrigues de Miranda L. Two new species of the genus Sterigmatomyces. Antonie van Leeuwenhoek 1975;41:193-9. https://doi.org/10.1007/BF02565051
  50. Kopecka M, Ilkovics L, Ramikova V, Yamaguchi M. Effect of cytoskeleton inhibitors on conidiogenesis and capsule in the long neck yeast Fellomyces examined by scanning electron microscopy. Chemotherapy 2010;56:197-202. https://doi.org/10.1159/000316330