Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).
References
- A. W. Goodman, Univalent Functions, Mariner, Tampa, 1983.
- I. Hotta and M. Nunokawa, On strongly starlike and convex functions of order α and type β, Mathematica 53(76) (2011), no. 1, 51-56.
- S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
- P. Montel, Lecons sur Les Fonctions Univalentes on Multivalentes, Gauthier-Villars, Paris, 1933.
- C. Pommerenke, Univalent Functions, Studia Mathematica/Mathematische Lehrbucher, Band XXV, Vandenhoeck & Ruprecht, Gottingen, 1975.
- M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82-93. https://doi.org/10.2307/1993881
- M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236-253. https://doi.org/10.2307/1993766
- S. Ruscheweyh and V. Singh, On certain extremal problems for functions with positive real part, Proc. Amer. Math. Soc. 61 (1976), no. 2, 329-334. https://doi.org/10.2307/2041336
- K. Sakaguchi, A variational method for functions with positive real part, J. Math. Soc. Japan 16 (1964), 287-297. https://doi.org/10.2969/jmsj/01630287
- L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat. 62 (1932), 12-19.
- D. K. Thomas, N. Tuneski, and A. Vasudevarao, Univalent Functions, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, 2018. https://doi.org/10.1515/9783110560961
- L.-M. Wang, The tilted Caratheodory class and its applications, J. Korean Math. Soc. 49 (2012), no. 4, 671-686. https://doi.org/10.4134/JKMS.2012.49.4.671