DOI QR코드

DOI QR Code

THE TILTED CARATHÉODORY FUNCTION CLASS AND ITS PRACTICAL APPLICATIONS

  • Nak Eun Cho (Department of Applied Mathematics Pukyong National University) ;
  • Inhwa Kim (Anheuser-Bush School of Business Harris-Stowe State University) ;
  • Young Jae Sim (Department of Artificial Intelligence and Mathematics Kyungsung University)
  • Received : 2023.11.07
  • Accepted : 2024.01.23
  • Published : 2024.07.31

Abstract

In this paper, by using a technique of the first-order differential subordination, we find several sufficient conditions for the tilted Carathéodory function of order β and angle α (α ∈ (-π/2, π/2) and β ∈ [0, cos α)), which maps the unit disk 𝔻 into the region {w ∈ ℂ : Re{ew} > β}. Using these conditions, we also derive conditions for an analytic function that maps 𝔻 into a sector defined by {w ∈ ℂ : | arg(w - γ)| < (π/2)δ}, where γ ∈ [0, 1) and δ ∈ (0, 1]. The results obtained here will be applied to find some conditions for spirallike functions and strongly starlike functions in 𝔻.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

References

  1. A. W. Goodman, Univalent Functions, Mariner, Tampa, 1983.
  2. I. Hotta and M. Nunokawa, On strongly starlike and convex functions of order α and type β, Mathematica 53(76) (2011), no. 1, 51-56.
  3. S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
  4. P. Montel, Lecons sur Les Fonctions Univalentes on Multivalentes, Gauthier-Villars, Paris, 1933.
  5. C. Pommerenke, Univalent Functions, Studia Mathematica/Mathematische Lehrbucher, Band XXV, Vandenhoeck & Ruprecht, Gottingen, 1975.
  6. M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82-93. https://doi.org/10.2307/1993881
  7. M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236-253. https://doi.org/10.2307/1993766
  8. S. Ruscheweyh and V. Singh, On certain extremal problems for functions with positive real part, Proc. Amer. Math. Soc. 61 (1976), no. 2, 329-334. https://doi.org/10.2307/2041336
  9. K. Sakaguchi, A variational method for functions with positive real part, J. Math. Soc. Japan 16 (1964), 287-297. https://doi.org/10.2969/jmsj/01630287
  10. L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat. 62 (1932), 12-19.
  11. D. K. Thomas, N. Tuneski, and A. Vasudevarao, Univalent Functions, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, 2018. https://doi.org/10.1515/9783110560961
  12. L.-M. Wang, The tilted Caratheodory class and its applications, J. Korean Math. Soc. 49 (2012), no. 4, 671-686. https://doi.org/10.4134/JKMS.2012.49.4.671