THE TILTED CARATHÉODORY FUNCTION CLASS AND ITS PRACTICAL APPLICATIONS

NAK EUN CHO*, INHWA KIM, AND YOUNG JAE SIM

ABSTRACT. In this paper, by using a technique of the first-order differential subordination, we find several sufficient conditions for the tilted Carathéodory function of order β and angle α ($\alpha \in (-\pi/2, \pi/2)$ and $\beta \in [0, \cos \alpha)$), which maps the unit disk \mathbb{D} into the region { $w \in \mathbb{C}$: Re{ $e^{i\alpha}w$ } > β }. Using these conditions, we also derive conditions for an analytic function that maps \mathbb{D} into a sector defined by { $w \in \mathbb{C}$: $|\arg(w - \gamma)| < (\pi/2)\delta$ }, where $\gamma \in [0, 1)$ and $\delta \in (0, 1]$. The results obtained here will be applied to find some conditions for spirallike functions and strongly starlike functions in \mathbb{D} .

1. Introduction

Let \mathcal{H}_1 be the class of functions p analytic in \mathbb{D} and satisfy p(0) = 1. Let us define two subfamilies $\mathcal{P}_{\beta}(\alpha)$ and $\mathcal{Q}_{\gamma}(\delta)$ of \mathcal{H}_1 by

$$\mathcal{P}_{\beta}(\alpha) = \{ p \in \mathcal{H}_1 : \operatorname{Re}\{ e^{i\alpha} p(z) \} > \beta \text{ for all } z \in \mathbb{D} \}$$

and

$$\mathcal{Q}_{\gamma}(\delta) = \{ p \in \mathcal{H}_1 : |\arg(p(z) - \gamma)| < \frac{\pi}{2} \delta \text{ for all } z \in \mathbb{D} \},\$$

where $-\pi/2 < \alpha < \pi/2$, $0 \leq \beta < \cos \alpha$, $0 \leq \gamma < 1$ and $0 < \delta \leq 1$. Functions in $\mathcal{P}_{\beta}(0) \equiv \mathcal{Q}_{\beta}(1) := \mathcal{P}(\beta)$ are called Carathéodory functions of order β , and functions in $\mathcal{P}_{0}(0) \equiv \mathcal{Q}_{0}(1) := \mathcal{P}$ are called functions with positive real part or Carathéodory functions (refer to [1, Chapter 7] and [11, Section 3.1]), and they have an important role of studying Geometric Function Theory. For example, see [6–9]. Also, functions in $\mathcal{P}_{0}(\alpha)$ were named by tilted Carathéodory functions by angle α [12]. For that reason, we call $\mathcal{P}_{\beta}(\alpha)$ by the class of tilted Carathéodory functions of order β and angle α .

O2024Korean Mathematical Society

Received November 7, 2023; Accepted January 23, 2024.

 $^{2020\} Mathematics\ Subject\ Classification.\ 30C45,\ 30C80.$

 $Key\ words\ and\ phrases.$ Differential subordination, spirallike functions, strongly starlike functions.

^{*} This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

Let \mathcal{A} denote the class of functions normalized by the condition f(0) = f'(0) - 1 = 0 which are analytic in the open unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Also, let \mathcal{S} denote the class of all functions in \mathcal{A} which are univalent in \mathbb{D} . For $-\pi/2 < \alpha < \pi/2$ and $0 \le \beta < \cos \alpha$, a function $f \in \mathcal{A}$ is called an α -spirallike function of order β [1, Vol. II, p. 89] (see also [4, 10]) if and only if f satisfies

(1.1)
$$\operatorname{Re}\left\{ \mathrm{e}^{\mathrm{i}\alpha} \frac{zf'(z)}{f(z)} \right\} > \beta, \quad z \in \mathbb{D}.$$

And, for $0 \leq \gamma < 1$ and $0 < \delta \leq 1$, $f \in \mathcal{A}$ is called a strongly starlike function of order δ and type γ [2] if and only if f satisfies

(1.2)
$$\left| \arg\left(\frac{zf'(z)}{f(z)} - \gamma\right) \right| < \frac{\pi}{2}\delta, \quad z \in \mathbb{D}.$$

We denote by $S^*_{\beta}(\alpha)$ and $SS^*_{\gamma}(\delta)$ the classes of functions satisfying the condition (1.1) and (1.2), respectively. In particular, functions in $S^*_0(\alpha)$ and $S^*_{\beta}(0) \equiv SS^*_{\beta}(1)$ are called α -spirallike and starlike of order β , respectively. Also, by strongly starlike functions of order δ we call functions in $SS^*_0(\delta)$. Especially, we have $S^*_0(0) \equiv SS^*_0(1) \equiv S^*$, where S^* is the well-known class of starlike univalent functions. We note that all functions in $S^*_{\beta}(\alpha)$ or $SS^*_{\gamma}(\delta)$ are univalent. Moreover, it holds that

$$\mathcal{S}^*_{\beta}(\alpha) \subset \mathcal{S}^*_0(\alpha) \subset \mathcal{S},$$
$$\mathcal{S}\mathcal{S}^*_{\gamma}(1) \equiv \mathcal{S}^*_{\gamma}(0) \subset \mathcal{S}^* \subset \mathcal{S}$$

and

$$\mathcal{SS}^*_{\gamma}(\delta) \subset \mathcal{SS}^*_0(\delta) \subset \mathcal{S}^* \subset \mathcal{S}.$$

We note that, by setting $J_f(z) := zf'(z)/f(z)$, we have the following equivalence

$$f \in \mathcal{S}^*_\beta(\alpha) \Longleftrightarrow J_f \in \mathcal{P}_\beta(\alpha)$$

and

$$f \in \mathcal{SS}^*_{\gamma}(\delta) \Longleftrightarrow J_f \in \mathcal{Q}_{\gamma}(\delta).$$

We also note that

(1.3)
$$\mathcal{P}_{\beta}(\alpha) \cap \mathcal{P}_{\beta}(-\alpha) \subset \mathcal{Q}_{\beta}\left(1 - \frac{2}{\pi}\alpha\right)$$

So it holds that

$$\mathcal{S}^*_{\beta}(\alpha) \cap \mathcal{S}^*_{\beta}(-\alpha) \subset \mathcal{S}\mathcal{S}^*_{\beta}\left(1 - \frac{2}{\pi}\alpha\right).$$

In Section 2, we will find some sufficient conditions for $p \in \mathcal{H}_1$ to satisfy $p \in \mathcal{P}_{\beta}(\alpha)$ or $p \in \mathcal{Q}_{\gamma}(\delta)$. We consider a region of functional $(1-\kappa)p(z)+\kappa p^2(z)+\kappa \lambda z p'(z)$ for p to be in the class $\mathcal{P}_{\beta}(\alpha)$. Also, for $p \in \mathcal{H}_1$ satisfying $\eta z p'(z) + P(z)p(z) = 1$, we will obtain some conditions for P(z) to $p \in \mathcal{P}_{\beta}(\alpha)$. Then, as direct consequences of these results, new criteria for α -spirallike functions of order β or strongly starlike functions of order δ and type γ will be listed in Section 3.

For analytic functions f and g, we say that f is subordinate to g, denoted by $f \prec g$, if there is an analytic function $\omega : \mathbb{D} \to \mathbb{D}$ with $|\omega(z)| \leq |z|$ such that $f(z) = g(\omega(z))$. Further, if g is univalent, then the definition of subordination $f \prec g$ simplifies to the conditions f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$ (see [5, p. 36]). Let $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ and $\partial \mathbb{D} = \{z \in \mathbb{C} : |z| = 1\}$ be the closure and boundary of \mathbb{D} , respectively. We denote by \mathcal{R} the class of functions q that are analytic and injective on $\overline{\mathbb{D}} \setminus E(q)$, where

$$E(q) = \left\{ \zeta : \zeta \in \partial \mathbb{D} \quad \text{and} \quad \lim_{z \to \zeta} q(z) = \infty \right\},$$

and are such that

$$q'(\zeta) \neq 0 \quad (\zeta \in \partial \mathbb{D} \setminus E(q))$$

Furthermore, let the subclass of \mathcal{R} for which q(0) = a be denote by $\mathcal{R}(a)$. We recall that the following lemma which will be used for our results.

Lemma 1.1 ([3, p. 24]). Let $q \in \mathcal{R}(a)$ and let

$$p(z) = a + a_n z^n + \cdots \quad (n \ge 1)$$

be an analytic function in \mathbb{D} with p(0) = a. If p is not subordinate to q, then there exist points $z_0 \in \mathbb{D}$ and $\zeta_0 \in \partial \mathbb{D} \setminus E(q)$ for which

- (i) $p(z_0) = q(\zeta_0);$
- (ii) $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0) \ (m \ge n \ge 1).$

2. Main results

Theorem 2.1. Let κ , α , β and λ be real numbers such that $\kappa > 0$, $-\pi/2 < \alpha < \pi/2$, $0 \le \beta < \cos \alpha$, $\lambda > 0$ and

(2.1)
$$\lambda > \frac{-2(\cos \alpha - \beta)\cos 2\alpha}{\cos \alpha}$$

If an analytic function p with p(0) = 1 satisfies

(2.2)
$$\operatorname{Re}\{(1-\kappa)p(z)+\kappa p^{2}(z)+\kappa\lambda zp'(z)\}>\Lambda(\kappa,\alpha,\beta,\lambda),\quad z\in\mathbb{D},$$

where

$$\Lambda(\kappa, \alpha, \beta, \lambda)$$

(2.3)
$$= \beta(1-\kappa)\cos\alpha + \kappa\beta^2\cos^2\alpha + \frac{\kappa\lambda\cos\alpha(2\beta\cos\alpha - 1 - \beta^2)}{2(\cos\alpha - \beta)} + \frac{\sin^2\alpha[(\cos\alpha - \beta)(1-\kappa) + \kappa\cos\alpha(4\beta(\cos\alpha - \beta) + \lambda)]^2}{2\kappa(\cos\alpha - \beta)[2(\cos\alpha - \beta)\cos2\alpha + \lambda\cos\alpha]}$$

and $\Lambda(\kappa, \alpha, \beta, \lambda) < 1$, then $p \in \mathcal{P}_{\beta}(\alpha)$. Furthermore, if $0 \leq \alpha < \pi/2$, then $p \in \mathcal{Q}_{\beta}(1 - (2/\pi)\alpha)$.

Proof. Let us define two functions q and $h : \mathbb{D} \to \mathbb{C}$ by

(2.4)
$$q(z) = e^{i\alpha} p(z)$$

and

(2.5)
$$h(z) = \frac{e^{i\alpha} + (e^{-i\alpha} - 2\beta)z}{1 - z}$$

Then, the functions q and h are analytic in $\mathbb D$ with

$$q(0) = h(0) = e^{i\alpha} \in \mathbb{C}$$
 and $h(\mathbb{D}) = \{w \in \mathbb{C} : \operatorname{Re} \{w\} > \beta\}$.

Now, suppose that q is not subordinate to h. Then by Lemma 1.1, there exist points $z_0 \in \mathbb{D}$ and $\zeta_0 \in \partial \mathbb{D} \setminus \{1\}$ such that

(2.6)
$$q(z_0) = h(\zeta_0) = \beta + i\rho \ (\rho \in \mathbb{R}).$$

Furthermore, by a logarithmic differentiation of (2.5), we have

$$\frac{h'(z)}{h(z)} = \frac{\mathrm{e}^{-\mathrm{i}\alpha} - 2\beta}{\mathrm{e}^{\mathrm{i}\alpha} + (\mathrm{e}^{-\mathrm{i}\alpha} - 2\beta)z} + \frac{1}{1-z}$$

and

(2.7)
$$zh'(z) = zh(z) \left[\frac{e^{-i\alpha} - 2\beta}{e^{i\alpha} + (e^{-i\alpha} - 2\beta)z} + \frac{1}{1-z} \right]$$
$$= \left[e^{-i\alpha} - 2\beta + h(z) \right] \cdot \frac{z}{1-z}.$$

From $h(\zeta_0) = \beta + i\rho$, we have

(2.8)
$$\zeta_0 = \frac{\beta + i\rho - e^{i\alpha}}{e^{-i\alpha} - \beta + i\rho} \quad \text{and} \quad \frac{\zeta_0}{1 - \zeta_0} = \frac{\beta + i\rho - e^{i\alpha}}{2(\cos\alpha - \beta)}$$

By taking (2.8) into account of (2.7), we get

(2.9)

$$\zeta_0 h'(\zeta_0) = \left[e^{-i\alpha} - 2\beta + h(\zeta_0) \right] \cdot \frac{\zeta_0}{1 - \zeta_0}$$

$$= \frac{(\beta + i\rho - e^{i\alpha})(e^{-i\alpha} - \beta + i\rho)}{2(\cos \alpha - \beta)}$$

$$= \frac{-\rho^2 + 2\rho \sin \alpha + 2\beta \cos \alpha - 1 - \beta^2}{2(\cos \alpha - \beta)} =: \sigma.$$

Thus, by Lemma 1.1, we get

(2.10)
$$z_0 q'(z_0) = m\zeta_0 h'(\zeta_0) = m\sigma \quad (m \ge 1),$$

where σ is given in (2.9).

Using (2.4), (2.6) and (2.10), we obtain

(2.11)

$$(1 - \kappa)p(z_0) + \kappa p^2(z_0) + \kappa \lambda z_0 p'(z_0)$$

$$= (1 - \kappa)(\beta \cos \alpha + \rho \sin \alpha) + \kappa((\beta^2 - \rho^2) \cos 2\alpha + 2\beta \rho \sin 2\alpha)$$

$$+ \kappa \lambda m \sigma \cos \alpha + i[(1 - \kappa)(\rho \cos \alpha - \beta \sin \alpha)]$$

$$+ \kappa (2\beta \rho \cos 2\alpha - (\beta^2 - \rho^2) \sin 2\alpha) - \kappa \lambda m \sigma \sin \alpha].$$

By taking real parts in the above and using the inequality $\kappa \lambda m \sigma \cos \alpha \leq \kappa \lambda \sigma \cos \alpha$, we obtain

(2.12)
$$\operatorname{Re}\{(1-\kappa)p(z_0) + \kappa p^2(z_0) + \kappa \lambda z_0 p'(z_0)\} \le \frac{1}{2(\cos \alpha - \beta)}g(\rho),$$

where $g(\rho) = k_2 \rho^2 + k_1 \rho + k_0$ with

$$\begin{aligned} k_2 &= -\kappa [2(\cos\alpha - \beta)\cos 2\alpha + \lambda\cos\alpha],\\ k_1 &= 2(\cos\alpha - \beta)(1 - \kappa)\sin\alpha + 4(\cos\alpha - \beta)\kappa\beta\sin 2\alpha + 2\kappa\lambda\sin\alpha\cos\alpha,\\ k_0 &= 2\beta(\cos\alpha - \beta)(1 - \kappa)\cos\alpha + 2\kappa\beta^2(\cos\alpha - \beta)\cos 2\alpha \\ &+ \kappa\lambda\cos\alpha(2\beta\cos\alpha - 1 - \beta^2). \end{aligned}$$

Since $\kappa > 0$, from the condition (2.1), we have $k_2 < 0$. So, the function g is a quadratic concave function in \mathbb{R} , and g has the unique local maximum at $\rho^* = -k_1/(2k_2)$. Thus we have

(2.13)
$$g(\rho) \le g(\rho^*) = -\frac{k_1^2}{4k_2} + k_0, \quad \rho \in \mathbb{R}.$$

Hence, by (2.12) and (2.13), we obtain

$$\operatorname{Re}\{(1-\kappa)p(z_0)+\kappa p^2(z_0)+\kappa\lambda z_0p'(z_0)\} \le \frac{1}{2(\cos\alpha-\beta)}g(\rho^*) = \Lambda(\kappa,\alpha,\beta,\lambda).$$

This is a contradiction to (2.2). Therefore we obtain $q \prec h$ in \mathbb{D} and it follows that the inequality Re $\{e^{i\alpha}p(z)\} > \beta$ holds for all $z \in \mathbb{D}$ and $p \in \mathcal{P}_{\beta}(\alpha)$.

Furthermore, for $0 \leq \alpha < \pi/2$, it is clear that $\Lambda(\kappa, \alpha, \beta, \lambda) = \Lambda(\kappa, -\alpha, \beta, \lambda)$ holds. So, we have $p \in \mathcal{P}_{\beta}(-\alpha)$, and that $p \in \mathcal{Q}_{\beta}(1 - (2/\pi)\alpha)$ follows from (1.3).

By taking $\kappa = 1$, $\lambda = 1$ and $\beta = 0$ in Theorem 2.1, we have the following result.

Corollary 2.2. Let $\alpha \in (-\pi/2, \pi/2)$ with $13 \sin^2 \alpha < 9$. If an analytic function p with p(0) = 1 satisfies

$$\operatorname{Re}\left\{p^{2}(z) + zp'(z)\right\} > -\frac{1}{2} + \frac{\sin^{2}\alpha}{2(3 - 4\sin^{2}\alpha)}, \quad z \in \mathbb{D},$$

then $\operatorname{Re}\{\operatorname{e}^{\mathrm{i}\alpha}p(z)\} > 0$ for all $z \in \mathbb{D}$, and

$$|\arg \{p(z)\}| < \frac{\pi}{2} - \alpha, \quad z \in \mathbb{D}.$$

Theorem 2.3. Let κ , α , β and λ be real numbers such that $\kappa > 0$, $0 < \alpha < \pi/2$, $0 \le \beta < \cos \alpha$ and $\lambda > 0$. If an analytic function p with p(0) = 1 satisfies

(2.14) $\operatorname{Im}\left\{(1-\kappa)p(z)+\kappa p^{2}(z)+\kappa\lambda z p'(z)\right\} < \Lambda(\kappa,\alpha,\beta,\lambda),$

where

$$(2.15) \quad \Lambda(\kappa, \alpha, \beta, \lambda)$$

$$(2.15) \quad = -(1-\kappa)\beta\sin\alpha - \kappa\beta^{2}\sin2\alpha + \frac{\kappa\lambda\sin\alpha}{2(\cos\alpha - \beta)}(-2\beta\cos\alpha + 1 + \beta^{2})$$

$$-\frac{[(\cos\alpha - \beta)[(1-\kappa)\cos\alpha + 2\kappa\beta\cos2\alpha] - \kappa\lambda\sin^{2}\alpha]^{2}}{2\kappa(\cos\alpha - \beta)[2(\cos\alpha - \beta)\sin2\alpha + \lambda\sin\alpha]}$$

and $\Lambda(\kappa, \alpha, \beta, \lambda) > 0$, then $p \in \mathcal{P}_{\beta}(\alpha)$.

Proof. Let us define q and h as given (2.4) and (2.5), respectively. And suppose that q is not subordinate to h. Then we have $z_0 \in \mathbb{D}$ and $\zeta_0 \in \partial \mathbb{D} \setminus \{1\}$ satisfying (2.6) and (2.10). Also, we get (2.11).

Using the inequality $\kappa \lambda m \sigma \leq \kappa \lambda \sigma$, we obtain

Im {
$$(1 - \kappa)p(z_0) + \kappa p^2(z_0) + \kappa \lambda z_0 p'(z_0)$$
} $\geq k_2 \rho^2 + k_1 \rho + k_0 =: g(\rho),$

where

$$k_{2} = \kappa \sin \alpha \left(2 \cos \alpha + \frac{\lambda}{2(\cos \alpha - \beta)} \right),$$

$$k_{1} = (1 - \kappa) \cos \alpha + 2\kappa \beta \cos 2\alpha - \frac{\kappa \lambda \sin^{2} \alpha}{\cos \alpha - \beta},$$

$$k_{0} = -(1 - \kappa)\beta \sin \alpha - \kappa \beta^{2} \sin 2\alpha + \frac{\kappa \lambda \sin \alpha}{2(\cos \alpha - \beta)} [-2\beta \cos \alpha + 1 + \beta^{2}]$$

Since $k_2 > 0$, g has the unique local minimum at $\rho = \rho^* := -k_1/(2k_2)$. Thus we have

$$g(\rho) \ge g(\rho^*) = k_0 - \frac{k_1^2}{4k_2} = \Lambda(\kappa, \alpha, \beta, \lambda)$$

for all $\rho \in \mathbb{R}$. Hence we obtain

$$\operatorname{Im}\left\{(1-\kappa)p(z_0)+\kappa p^2(z_0)+\kappa\lambda z_0p'(z_0)\right\} \ge \Lambda(\kappa,\alpha,\beta,\lambda),$$

which is a contradiction to (2.14). Therefore we obtain $q \prec h$ in \mathbb{D} and it follows that the inequality Re $\{e^{i\alpha}p(z)\} > \beta$ holds for all $z \in \mathbb{D}$ and $p \in \mathcal{P}_{\beta}(\alpha)$. \Box

By taking $\kappa=1,\;\lambda=1$ and $\beta=0$ in Theorem 2.3, we have the following result.

Corollary 2.4. Let $0 < \alpha < \pi/2$. If an analytic function p with p(0) = 1 satisfies

$$\operatorname{Im} \left\{ p^2(z) + zp'(z) \right\} < \frac{5\cos\alpha\sin\alpha}{2 + 8\cos^2\alpha}, \quad z \in \mathbb{D},$$

then $p \in \mathcal{P}_0(\alpha)$.

Theorem 2.5. Let κ , α , β and λ be real numbers such that $\kappa > 0$, $-\pi/2 < \alpha < 0$, $0 \leq \beta < \cos \alpha$ and $\lambda > 0$. If an analytic function p with p(0) = 1 satisfies

$$\operatorname{Im}\left\{(1-\kappa)p(z)+\kappa p^{2}(z)+\kappa\lambda zp'(z)\right\} > \Lambda(\kappa,\alpha,\beta,\lambda),$$

where $\Lambda(\kappa, \alpha, \beta, \lambda)$ is given by (2.15) and $\Lambda(\kappa, \alpha, \beta, \lambda) < 0$, then $p \in \mathcal{P}_{\beta}(\alpha)$.

By taking $\kappa = 1$, $\lambda = 1$ and $\beta = 0$ in Theorem 2.5, we have the following result.

Corollary 2.6. Let $-\pi/2 < \alpha < 0$. If an analytic function p with p(0) = 1 satisfies

$$\operatorname{Im} \left\{ p^2(z) + zp'(z) \right\} > \frac{5\cos\alpha\sin\alpha}{2 + 8\cos^2\alpha}, \quad z \in \mathbb{D},$$

then $p \in \mathcal{P}_0(\alpha)$.

Also, combining Corollaries 2.4 and 2.6 leads to the following result.

Corollary 2.7. Let $0 < \alpha < \pi/2$. If an analytic function p with p(0) = 1 satisfies

$$|\operatorname{Im} \{p^2(z) + zp'(z)\}| < \frac{5\cos\alpha\sin\alpha}{2 + 8\cos^2\alpha}, \quad z \in \mathbb{D},$$

then $p \in \mathcal{Q}_0(1 - (2/\pi)\alpha)$.

Now we consider a differential equation of p defined by

(2.16)
$$\eta z p'(z) + P(z)p(z) = 1$$

for some $P : \mathbb{D} \to \mathbb{C}$. In what follows, we find some sufficient conditions for $p \in \mathcal{H}_1$ satisfying (2.16) to belong to $\mathcal{P}_{\beta}(\alpha)$ or $\mathcal{Q}_{\gamma}(\delta)$.

Theorem 2.8. Let α , β and η be real numbers such that $-\pi/2 < \alpha < \pi/2$, $0 \leq \beta < \cos \alpha$ and $\eta > 0$. Let

(2.17)
$$\Delta = \Delta(\alpha, \beta, \eta) := \min_{\rho \in \mathbb{R}} \frac{\eta^2 \rho^4 + a_3 \rho^3 + a_2 \rho^2 + a_1 \rho + a_0}{\beta^2 + \rho^2},$$

where

$$a_0 = 4(\cos\alpha - \beta)^2 + \eta(2\beta\cos\alpha - 1 - \beta^2)[-4\cos\alpha(\cos\alpha - \beta) + \eta(2\beta\cos\alpha - 1 - \beta^2)],$$

(2.18)
$$a_1 = 4\eta \sin \alpha [-2\cos \alpha (\cos \alpha - \beta) + \eta (2\beta \cos \alpha - 1 - \beta^2)],$$
$$a_2 = 4\eta \cos \alpha (\cos \alpha - \beta) + 2\eta^2 (2\sin^2 \alpha - 2\beta \cos \alpha + 1 + \beta^2),$$
$$a_3 = -4\eta^2 \sin \alpha.$$

Assume that $\sqrt{\Delta} > 2(\cos \alpha - \beta)$, and let $P : \mathbb{D} \to \mathbb{C}$ with

$$|P(z)| < \frac{\sqrt{\Delta}}{2(\cos \alpha - \beta)} =: \tilde{\Delta}, \quad z \in \mathbb{D}.$$

If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies (2.16), then $\operatorname{Re}\{e^{i\alpha}p(z)\} > \beta$ for all $z \in \mathbb{D}$. Furthermore, if $0 \le \alpha < \pi/2$, then $p \in \mathcal{Q}_{\beta}(1 - (2/\pi)\alpha)$.

Proof. Let us define q and h as given (2.4) and (2.5), respectively. And suppose that q is not subordinate to h. Then we have $z_0 \in \mathbb{D}$ and $\zeta_0 \in \partial \mathbb{D} \setminus \{1\}$ satisfying (2.6) and (2.10).

By (2.16), we get

(2.19)
$$P(z_0) = \frac{\mathrm{e}^{\mathrm{i}\alpha} - \eta z_0 q'(z_0)}{q(z_0)} = \frac{\mathrm{e}^{\mathrm{i}\alpha} - \eta m\sigma}{\beta + \mathrm{i}\rho}$$

Moreover, since $m \ge 1$ and $\sigma < 0$, by (2.9), we have

(2.20)

$$|e^{i\alpha} - \eta m\sigma|^{2}$$

$$= (\cos \alpha - \eta m\sigma)^{2} + \sin^{2} \alpha$$

$$\geq (\cos \alpha - \eta \sigma)^{2} + \sin^{2} \alpha$$

$$= 1 - 2\eta \sigma \cos \alpha + \eta^{2} \sigma^{2}$$

$$= \frac{\eta^{2} \rho^{4} + a_{3} \rho^{3} + a_{2} \rho^{2} + a_{1} \rho + a_{0}}{4(\cos \alpha - \beta)^{2}},$$

where $a_i, i \in \{0, 1, 2, 3\}$ are given by (2.18). Hence, combining (2.19) and (2.20) yields

$$|P(z_0)|^2 = \frac{|e^{i\alpha} - \eta m\sigma|^2}{\beta^2 + \rho^2} \ge \frac{\rho^4 + a_3\rho^3 + a_2\rho^2 + a_1\rho + a_0}{4(\cos\alpha - \beta)^2(\beta^2 + \rho^2)}$$

.

Thus we get

$$|P(z_0)|^2 \ge \frac{\Delta}{4(\cos\alpha - \beta)^2},$$

which contradicts the assumption of Theorem 2.8. Therefore we obtain $q \prec h$ in \mathbb{D} and Re $\{e^{i\alpha}p(z)\} > \beta$ for $z \in \mathbb{D}$.

Furthermore, let $0 \le \alpha < \pi/2$. Then it is easy to see that

$$\Delta(-\alpha,\beta,\eta) = \min_{\rho \in \mathbb{R}} \frac{\eta^2 \rho^4 - a_3 \rho^3 + a_2 \rho^2 - a_1 \rho + a_0}{\beta^2 + \rho^2}$$
$$= \min_{\tilde{\rho} \in \mathbb{R}} \frac{\eta^2 \tilde{\rho}^4 + a_3 \tilde{\rho}^3 + a_2 \tilde{\rho}^2 + a_1 \tilde{\rho} + a_0}{\beta^2 + \tilde{\rho}^2}$$
$$= \Delta(\alpha,\beta,\eta),$$

where $\tilde{\rho} = -\rho \in \mathbb{R}$. So, it follows that $p \in \mathcal{P}_{\beta}(-\alpha)$ and $p \in \mathcal{Q}_{\beta}(1-(2/\pi)\alpha)$ by (1.3).

By putting $\alpha = \beta = 0$ in Theorem 2.8, we have the following result.

Corollary 2.9. Let $\eta \in \mathbb{R}$ with $\eta > -1 + \sqrt{2}$. Let $P : \mathbb{D} \to \mathbb{C}$ with $|P(z)| < \sqrt{\eta^2 + 2\eta}$. If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies (2.16), then $\operatorname{Re}\{p(z)\} > 0$ for all $z \in \mathbb{D}$.

We give tables which give the approximate values of $\tilde{\Delta}$ in Theorem 2.8 for the following cases:

(a) $\alpha = 0, \eta = 1$ and $\beta = j/10 \ (j = 1, 2, \dots, 9),$

(b) $\alpha = 0, \beta = 1/2$ and $\eta = 1, 2, \dots, 10$, (c) $\beta = 1/2, \eta = 1$ and $\alpha = j/10$ $(j = 0, 1, 2, \dots, 10)$.

TABLE 1. The approximate values of $\tilde{\Delta}$ in the case (a)

β	$\tilde{\Delta}$	β	$\tilde{\Delta}$
0	1.73205	0.5	2
0.1	1.79161	0.6	1.93649
0.2	1.85405	0.7	1.64286
0.3	1.91663	0.8	1.375
0.4	1.97203	0.9	1.16667

TABLE 2. The approximate values of $\tilde{\Delta}$ in the case (b)

η	$\tilde{\Delta}$	η	$\tilde{\Delta}$
1	2	6	5
2	2.82843	7	5.5
3	3.4641	8	6
4	4	9	6.5
5	4.5	10	7

TABLE 3. The approximate values of $\tilde{\Delta}$ in the case (c)

α	$\tilde{\Delta}$	α	$\tilde{\Delta}$
0	2	0.6	1.24888
0.1	1.83753	0.7	1.16618
0.2	1.69343	0.8	1.09589
0.3	1.56427	0.9	1.04047
0.4	1.44783	1.0	1.00543
0.5	1.34286		

The following result is a sufficient condition for $p \in \mathcal{P}_0(\alpha)$.

Theorem 2.10. Let α and η be real numbers such that $-\pi/2 < \alpha < \pi/2$, $\eta > 0$ and $\cos^2 \alpha (\eta \cos^2 \alpha - 1) + \eta^2 (1 - \sin \alpha)^2 > 0$. Let $P : \mathbb{D} \to \mathbb{C}$ with

(2.21)
$$|P(z)| \le \frac{\sqrt{\eta \cos^4 \alpha + \eta^2 (1 - \sin \alpha)^2}}{\cos \alpha}, \quad z \in \mathbb{D}.$$

If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies the differential equation (2.16), then $p \in \mathcal{P}_0(\alpha)$. Furthermore, if $0 \le \alpha < \pi/2$, then $p \in \mathcal{Q}_0(1 - (2/\pi)\alpha)$. *Proof.* Let $q(z) = e^{i\alpha}p(z)$ and

$$h_1(z) = \frac{\mathrm{e}^{\mathrm{i}\alpha} + \mathrm{e}^{-\mathrm{i}\alpha}z}{1-z}.$$

Suppose that q is not subordinate to h_1 . By Lemma 1.1, there exist points $z_0 \in \mathbb{D}$ and $\zeta_0 \in \partial \mathbb{D} \setminus \{1\}$ such that

(2.22)
$$q(z_0) = h_1(\zeta_0) = i\rho \ (\rho \in \mathbb{R} \setminus \{0\}) \text{ and}$$

$$z_0 q'(z_0) = m\zeta_0 h'_1(\zeta_0) = m\sigma_1 \ (m \ge 1),$$

where

$$\sigma_1 = \frac{-\rho^2 + 2\rho \sin \alpha - 1}{2\cos \alpha}.$$

Therefore, from (2.16) and (2.22), we have

$$P(z_0) = \frac{\mathrm{e}^{\mathrm{i}\alpha} - \eta m \sigma_1}{\mathrm{i}\rho}.$$

Moreover, since $m \ge 1$ and $\sigma_1 < 0$, we have

$$e^{i\alpha} - \eta m \sigma_1|^2 \ge 1 - 2\eta \sigma_1 \cos \alpha + \eta^2 \sigma_1^2 = g(\rho),$$

where

$$g(x) = 1 + \eta (x^2 - 2x\sin\alpha + 1) + \frac{\eta^2}{4\cos^2\alpha} (x^2 - 2x\sin\alpha + 1)^2.$$

For x > 0, we have

$$\frac{1}{x^2} > 0, \quad \frac{x^2 - 2x\sin\alpha + 1}{x^2} \ge 1 - \sin^2\alpha = \cos^2\alpha$$

and

$$\frac{x^2 - 2x\sin\alpha + 1}{x} \ge 2(1 - \sin\alpha).$$

Using the above inequalities, we obtain

(2.23)
$$\frac{g(x)}{x^2} > \frac{\eta \cos^4 \alpha + \eta^2 (1 - \sin \alpha)^2}{\cos^2 \alpha}, \quad x > 0.$$

By a similar method with the above, we also obtain

(2.24)
$$\frac{g(x)}{x^2} > \frac{\eta \cos^4 \alpha + \eta^2 (1 + \sin \alpha)^2}{\cos^2 \alpha} \ge \frac{\eta \cos^4 \alpha + \eta^2 (1 - \sin \alpha)^2}{\cos^2 \alpha}, \quad x < 0.$$

Therefore, by (2.23) and (2.24), we get

e, by (2.23) and (2.24), we get $|P(z_0)|^2 \ge \frac{g(\rho)}{\rho^2} > \frac{\eta \cos^4 \alpha + \eta^2 (1 - \sin \alpha)^2}{\cos^2 \alpha},$

which contradicts (2.21). Therefore we obtain $q \prec h_1$ in \mathbb{D} and $\operatorname{Re}\left\{e^{i\alpha}p(z)\right\} > 0$ for $z \in \mathbb{D}$ as we asserted.

Also, for $0 \le \alpha < \pi/2$, we have $\operatorname{Re}\left\{e^{-i\alpha}p(z)\right\} > 0$. Therefore, we get $p \in \mathcal{Q}_0(1-(2/\pi)\alpha)$.

In particular, the case $\alpha = 0$ in Theorem 2.10 induces the following result.

Corollary 2.11. Let $\eta \in \mathbb{R}$ with $\eta > (-1 + \sqrt{5})/2$, and let $P : \mathbb{D} \to \mathbb{C}$ with $|P(z)| \leq \sqrt{\eta(1+\eta)}$ for $z \in \mathbb{D}$. If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies the differential equation (2.16), then $\operatorname{Re}\{p(z)\} > 0$ for all $z \in \mathbb{D}$.

By taking $\eta = 1$ and $P(z) = 1 + (\sqrt{2} - 1)z^n$ in Corollary 2.11, we have the following result.

Corollary 2.12. Let $n \in \mathbb{N}$. If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies the differential equation

$$p(z) + [1 + (\sqrt{2} - 1)z^n]zp'(z) = 1, \quad z \in \mathbb{D},$$

then $\operatorname{Re}\{p(z)\} > 0$ for $z \in \mathbb{D}$.

Theorem 2.13. For given α , β and η be real numbers such that $-\pi/2 < \alpha < \pi/2$, $0 < \beta < \cos \alpha$ and $\eta > 0$, let

$$b_0 = 2\beta \cos \alpha (\cos \alpha - \beta) + \beta \eta (-2\beta \cos \alpha + 1 + \beta^2),$$

$$b_1 = \sin \alpha (\cos \alpha - \beta - \beta \eta),$$

$$b_2 = \beta \eta.$$

Assume that $\Xi_1 > 2(\cos \alpha - \beta)$, where (2.25)

$$\Xi_1 := \Xi_1(\alpha, \beta, \eta) = \begin{cases} \min\{b_0/\beta^2, b_2\}, & \text{when } \alpha = 0 \text{ or } \cos \alpha = \beta(1+\eta), \\ \min\{g(\rho_1), g(\rho_2), b_2\}, & \text{otherwise} \end{cases}$$

with

(2.26)
$$g(x) = \frac{b_2 x^2 + 2b_1 x + b_0}{x^2 + \beta^2}$$

and

$$\rho_i = \frac{b_2 \beta^2 - b_0 + (-1)^i \sqrt{(b_2 \beta^2 - b_0)^2 + 4b_1^2 \beta^2}}{2b_1}, \quad i \in \{1, 2\}.$$

Let $P : \mathbb{D} \to \mathbb{C}$ with

(2.27)
$$\operatorname{Re} \{P(z)\} < \frac{\Xi_1}{2(\cos \alpha - \beta)}, \quad z \in \mathbb{D}.$$

If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies the differential equation (2.16), then $p \in \mathcal{P}_{\beta}(\alpha)$. Furthermore, if $0 \le \alpha < \pi/2$, then $p \in \mathcal{Q}_{\beta}(1 - (2/\pi)\alpha)$.

Proof. Let us define q and h as given (2.4) and (2.5), respectively. And suppose that q is not subordinate to h. Then we have $z_0 \in \mathbb{D}$ and $\zeta_0 \in \partial \mathbb{D} \setminus \{1\}$ satisfying (2.6) and (2.10).

By (2.16), we get

(2.28)
$$\operatorname{Re}\{P(z_0)\} = \operatorname{Re}\left\{\frac{\mathrm{e}^{\mathrm{i}\alpha} - \eta m\sigma}{\beta + \mathrm{i}\rho}\right\} = \frac{\beta(\cos\alpha - m\eta\sigma) + \rho\sin\alpha}{\beta^2 + \rho^2},$$

N. E. CHO, I. KIM, AND Y. J. SIM

where σ is given by (2.9). Since $m \ge 1$, $\sigma < 0$ and $\eta > 0$, (2.28) implies

$$\operatorname{Re}\{P(z_0)\} \ge \frac{\beta(\cos\alpha - \eta\sigma) + \rho\sin\alpha}{\beta^2 + \rho^2} = \frac{g(\rho)}{2(\cos\alpha - \beta)}$$

where g is given by (2.26). Therefore, it is sufficient to show that $g(\rho) \geq \Xi_1$ for all $\rho \in \mathbb{R}$, which leads a contraction to (2.27).

Assume that $\alpha = 0$ or $\cos \alpha = \beta(1 + \eta)$. Then we have $b_1 = 0$. For the case $b_0/\beta^2 = b_2$, we have

$$g(\rho) = b_2 = \min\{b_0/\beta^2, b_2\} = \Xi_1, \quad \rho \in \mathbb{R}.$$

For the case $b_0/\beta^2 \neq b_2$, we note that $g'(\rho) = 0$ occurs only at $\rho = 0$. Also, we have

(2.29)
$$\lim_{\rho \to \infty} g(\rho) = \lim_{\rho \to -\infty} g(\rho) = b_2.$$

Therefore, we get

$$g(\rho) \ge \min\{b_0/\beta^2, b_2\} = \Xi_1, \quad \rho \in \mathbb{R},$$

which contradicts (2.27).

Now we assume that $\alpha \neq 0$ and $\cos \alpha \neq \beta(1+\eta)$. Then we have $b_1 \neq 0$ and $g'(\rho) = 0$ occurs when $\rho = \rho_1$ or ρ_2 . Since the equalities in (2.29) hold again, we get

$$g(\rho) \ge \min\{g(\rho_1), g(\rho_2), b_2\} = \Xi_1, \quad \rho \in \mathbb{R},$$

which contradicts (2.27). Thus we have $\operatorname{Re}\{e^{i\alpha}p(z)\} > \beta$ for all $z \in \mathbb{D}$. For $0 \leq \alpha < 1$, it holds that

$$\Xi_1(-\alpha,\beta,\eta) = \min_{x\in\mathbb{R}} \frac{b_2 x^2 - 2b_1 x + b_0}{x^2 + \beta^2}$$
$$= \min_{\tilde{x}\in\mathbb{R}} \frac{b_2 \tilde{x}^2 + 2b_1 \tilde{x} + b_0}{\tilde{x}^2 + \beta^2}$$
$$= \Xi_1(\alpha,\beta,\eta),$$

where $\tilde{x} = -x$. Thus we have $\operatorname{Re}\{e^{-i\alpha}p(z)\} > \beta$ for all $z \in \mathbb{D}$, which follows that $p \in \mathcal{Q}_{\beta}(1-(2/\pi)\alpha)$. It completes the proof of Theorem 2.13.

Next, we give a similar result with Theorem 2.13 for the case $\eta < 0$. We omit the proof of following result because it is so analogous to the proof of Theorem 2.13.

Theorem 2.14. Let $\eta \in \mathbb{R}$ with $\eta < 0$. And let α , β , b_0 , b_1 , b_2 , ρ_1 and ρ_2 be the quantities defined as in Theorem 2.13. Assume that $\Xi_2 < 2(\cos \alpha - \beta)$, where (2.30)

$$\Xi_2 := \Xi_2(\alpha, \beta, \eta) = \begin{cases} \max\{b_0/\beta^2, b_2\}, & \text{when } \alpha = 0 \text{ or } \cos \alpha = \beta(1+\eta), \\ \max\{g(\rho_1), g(\rho_2), b_2\}, & \text{otherwise}, \end{cases}$$

where g is defined by (2.26). Let $P : \mathbb{D} \to \mathbb{C}$ with

$$\operatorname{Re} \{P(z)\} > \frac{\Xi_2}{2(\cos \alpha - \beta)}, \quad z \in \mathbb{D}.$$

If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies the differential equation (2.16), then $p \in \mathcal{P}_{\beta}(\alpha)$. Furthermore, if $0 \le \alpha < \pi/2$, then $p \in \mathcal{Q}_{\beta}(1 - (2/\pi)\alpha)$.

If we put $\alpha = 0$ in Theorems 2.13 and 2.14, then we have the following corollaries.

Corollary 2.15. Let $P : \mathbb{D} \to \mathbb{C}$ with $\operatorname{Re}\{P(z)\} < \Theta_1$, where

$$\Theta_{1} = \begin{cases} \frac{\beta\eta}{2(1-\beta)}, & when \begin{cases} 0 < \beta \le 1/2 \text{ and } \eta > 2(1-\beta)/\beta, \\ 1/2 < \beta < 1 \text{ and } 2(1-\beta)/\beta < \eta < 2(1-\beta)/(2\beta-1), \\ \frac{2+\eta(1-\beta)}{2\beta}, when 1/2 < \beta < 1 \text{ and } \eta \ge 2(1-\beta)/(2\beta-1). \end{cases}$$

If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies the differential equation (2.16), then $\operatorname{Re}\{p(z)\} > \beta$ for all $z \in \mathbb{D}$.

Corollary 2.16. Let $P : \mathbb{D} \to \mathbb{C}$ with $\operatorname{Re}\{P(z)\} > \Theta_2$, where

$$\Theta_{2} = \begin{cases} \frac{\beta\eta}{2(1-\beta)}, & \text{when } 1/2 < \beta < 1 \text{ and } \eta \leq 2(1-\beta)/(1-2\beta), \\ \frac{2+\eta(1-\beta)}{2\beta}, & \text{when } \begin{cases} 0 < \beta \leq 1/2 \text{ and } \eta < -2, \\ 1/2 < \beta < 2/3 \text{ and } 2(1-\beta)/(1-2\beta) \leq \eta < -2. \end{cases}$$

If p is analytic in \mathbb{D} , p(0) = 1 and p satisfies the differential equation (2.16), then $\operatorname{Re}\{p(z)\} > \beta$ for all $z \in \mathbb{D}$.

3. Sufficient conditions for spirallike and strongly starlike functions

Corollary 3.1. Let κ , α , β and λ be real numbers such that $\kappa > 0$, $-\pi/2 < \alpha < \pi/2$, $0 \le \beta < \cos \alpha$, $\lambda > 0$ and

$$\lambda > \frac{-2(\cos\alpha - \beta)\cos 2\alpha}{\cos\alpha}.$$

If $f \in \mathcal{A}$ satisfies

$$\operatorname{Re}\left\{ \left(\frac{zf'(z)}{f(z)}\right) \left[1 - \kappa + \kappa(1-\lambda)\frac{zf'(z)}{f(z)} + \kappa\lambda\left(1 + \frac{zf''(z)}{f'(z)}\right) \right] \right\}$$

> $\Lambda(\kappa, \alpha, \beta, \lambda), \quad z \in \mathbb{D},$

and $\Lambda(\kappa, \alpha, \beta, \lambda) < 1$, where Λ is given by (2.3), then $f \in \mathcal{S}^*_{\beta}(\alpha)$, or $f \in \mathcal{S}\mathcal{S}^*_{\beta}(1-(2/\pi)\alpha)$.

In particular, by putting $\lambda = 1$ and $\alpha = 0$ or $\kappa = 1$ and $\alpha = 0$ in Corollary 3.1, we have the following corollaries.

Corollary 3.2. If a function $f \in A$ satisfies the condition

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} + \kappa \frac{z^2 f''(z)}{f(z)}\right\} > \beta + \kappa \left(-\frac{1}{2} - \frac{\beta}{2} + \beta^2\right), \quad z \in \mathbb{D},$$

then $f \in \mathcal{S}^*_{\beta}(0)$.

Corollary 3.3. If a function $f \in \mathcal{A}$ satisfies the condition $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left[(1-\lambda)\frac{zf'(z)}{f(z)} + \lambda\left(1+\frac{zf''(z)}{f'(z)}\right)\right]\right\} > \frac{1}{2}(2\beta^2 + \beta\lambda - 1), \quad z \in \mathbb{D},$ then $f \in \mathcal{S}^*_{\beta}(0).$

For $f \in \mathcal{A}$, setting p(z) = zf'(z)/f(z) in (2.16) gives a differential equation (3.1) $(\eta + P(z))zf(z)f'(z) + \eta z^2 f(z)f''(z) - \eta z^2 (f'(z))^2 = (f(z))^2.$

So, by Theorems 2.8, 2.10, 2.13 and 2.14, we have the following results.

Corollary 3.4. Let α , β and η be real numbers such that $-\pi/2 < \alpha < \pi/2$, $0 \leq \beta < \cos \alpha$ and $\eta > 0$. Let $P : \mathbb{D} \to \mathbb{C}$ with

$$|P(z)| < \frac{\sqrt{\Delta}}{2(\cos \alpha - \beta)}, \quad z \in \mathbb{D},$$

where Δ is given by (2.17). If $f \in \mathcal{A}$ satisfies (3.1), then $f \in \mathcal{S}^*_{\beta}(\alpha)$, or $f \in \mathcal{S}\mathcal{S}^*_{\beta}(1-(2/\pi)\alpha)$.

Corollary 3.5. Let α and η be real numbers such that $-\pi/2 < \alpha < \pi/2$ and $\eta > 0$. Let $P : \mathbb{D} \to \mathbb{C}$ with

$$|P(z)| \le \frac{\sqrt{\eta \cos^4 \alpha + \eta^2 (1 - \sin \alpha)^2}}{\cos \alpha}, \quad z \in \mathbb{D}$$

If $f \in \mathcal{A}$ satisfies (3.1), then $f \in \mathcal{S}_0^*(\alpha)$, or $f \in \mathcal{SS}_0^*(1 - (2/\pi)\alpha)$.

Corollary 3.6. For given α , β and η be real numbers such that $-\pi/2 < \alpha < \pi/2$, $0 < \beta < \cos \alpha$ and $\eta > 0$. Assume that $\Xi_1 > 2(\cos \alpha - \beta)$, where Ξ_1 is given by (2.25). Let $P : \mathbb{D} \to \mathbb{C}$ with

$$\operatorname{Re} \{P(z)\} < \frac{\Xi_1}{2(\cos \alpha - \beta)}, \quad z \in \mathbb{D}.$$

If $f \in \mathcal{A}$ satisfies (3.1), then $f \in \mathcal{S}^*_{\beta}(\alpha)$, or $f \in \mathcal{S}\mathcal{S}^*_{\beta}(1-(2/\pi)\alpha)$.

Corollary 3.7. For given α , β and η be real numbers such that $-\pi/2 < \alpha < \pi/2$, $0 < \beta < \cos \alpha$ and $\eta > 0$. Assume that $\Xi_2 < 2(\cos \alpha - \beta)$, where Ξ_2 is given by (2.30). Let $P : \mathbb{D} \to \mathbb{C}$ with

$$\operatorname{Re} \{P(z)\} > \frac{\Xi_2}{2(\cos \alpha - \beta)}, \quad z \in \mathbb{D}.$$

If $f \in \mathcal{A}$ satisfies (3.1), then $f \in \mathcal{S}^*_{\beta}(\alpha)$, or $f \in \mathcal{S}\mathcal{S}^*_{\beta}(1-(2/\pi)\alpha)$.

We end this paper with suggesting a geometric property of an integral operator defined on \mathcal{A} .

Corollary 3.8. Let $f \in S$ and β and γ be real numbers such as $\beta \neq 0$ and $\beta + \gamma > 0$. If

$$\left|\beta \frac{zf'(z)}{f(z)} + \gamma\right| < \frac{\sqrt{(\beta + \gamma)\cos^4 \alpha + (1 - \sin \alpha)^2}}{\cos \alpha}, \quad z \in \mathbb{D},$$

then

$$\arg\left(\beta\frac{zF'(z)}{F(z)}+\gamma\right) < \frac{\pi}{2}-\alpha, \quad z \in \mathbb{D},$$

where F is the integral operator defined by

(3.2)
$$F(z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_0^z f^{\beta}(t) t^{\gamma - 1}\right]^{1/\beta}.$$

Proof. Let

$$P(z) = \frac{1}{\beta + \gamma} \left(\beta \frac{zf'(z)}{f(z)} + \gamma \right)$$

and

(3.3)
$$p(z) = \frac{\beta + \gamma}{z^{\gamma} f^{\beta}(z)} \int_0^z f^{\beta}(t) t^{\gamma - 1} dt.$$

Then P and p are analytic in \mathbb{D} with P(0) = p(0) = 1. By a simple calculation, we have

$$\frac{1}{\beta + \gamma} z p'(z) + P(z)p(z) = 1.$$

By using Theorem 2.10 with $\eta = 1/(\beta + \gamma)$, we obtain that

$$|\arg p(z)| < \frac{\pi}{2} - \alpha, \quad z \in \mathbb{D}$$

From (3.2) and (3.3), we easily see that $F(z) = f(z)[p(z)]^{1/\beta}$. Since

$$\beta \frac{zF'(z)}{F(z)} + \gamma = \frac{\beta + \gamma}{p(z)}$$

the conclusion of Corollary 3.8 immediately follows.

References

- [1] A. W. Goodman, Univalent Functions, Mariner, Tampa, 1983.
- [2] I. Hotta and M. Nunokawa, On strongly starlike and convex functions of order α and type β , Mathematica **53(76)** (2011), no. 1, 51–56.
- [3] S. S. Miller and P. T. Mocanu, *Differential Subordinations*, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
- [4] P. Montel, Leçons sur Les Fonctions Univalentes on Multivalentes, Gauthier-Villars, Paris, 1933.
- [5] C. Pommerenke, Univalent Functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975.
- M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82–93. https://doi.org/10.2307/1993881
- M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236-253. https://doi.org/10.2307/ 1993766

- S. Ruscheweyh and V. Singh, On certain extremal problems for functions with positive real part, Proc. Amer. Math. Soc. 61 (1976), no. 2, 329–334. https://doi.org/10.2307/ 2041336
- K. Sakaguchi, A variational method for functions with positive real part, J. Math. Soc. Japan 16 (1964), 287-297. https://doi.org/10.2969/jmsj/01630287
- [10] L. Špaček, Contribution à la theorie des fonctions univalentes, Casopis Pest. Mat. 62 (1932), 12–19.
- [11] D. K. Thomas, N. Tuneski, and A. Vasudevarao, Univalent Functions, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, 2018. https://doi.org/10.1515/ 9783110560961
- [12] L.-M. Wang, The tilted Carathéodory class and its applications, J. Korean Math. Soc. 49 (2012), no. 4, 671–686. https://doi.org/10.4134/JKMS.2012.49.4.671

NAK EUN CHO DEPARTMENT OF APPLIED MATHEMATICS PUKYONG NATIONAL UNIVERSITY BUSAN 48513, KOREA Email address: necho@pknu.ac.kr

INHWA KIM ANHEUSER-BUSH SCHOOL OF BUSINESS HARRIS-STOWE STATE UNIVERSITY ST. LOUIS, MO 63103, USA *Email address*: ihyahootn@gmail.com, kimi@hssu.edu

Young Jae Sim Department of Artificial Intelligence and Mathematics Kyungsung University Busan 48434, Korea Email address: yjsim@ks.ac.kr