DOI QR코드

DOI QR Code

THE GROWTH OF BLOCH FUNCTIONS IN SOME SPACES

  • Wenwan Yang (School of Mathematics and Statistics Guangdong University of Technology) ;
  • Junming Zhugeliu (School of Mathematics and Statistics Guangdong University of Technology)
  • 투고 : 2023.09.12
  • 심사 : 2023.12.21
  • 발행 : 2024.07.31

초록

Suppose f belongs to the Bloch space with f(0) = 0. For 0 < r < 1 and 0 < p < ∞, we show that $$M_p(r,\,f)\,=\,({\frac{1}{2\pi}}{\int_{0}^{2\pi}}\,{\mid}f(re^{it}){\mid}^pdt)^{1/p}\,{\leq}\,({\frac{{\Gamma}(\frac{p}{2}+1)}{{\Gamma}(\frac{p}{2}+1-k)}})^{1/p}\,{\rho}{\mathcal{B}}(log\frac{1}{1-r^2})^{1/2},$$ where ρʙ(f) = supz∈ⅅ(1 - |z|2)|f'(z)| and k is the integer satisfying 0 < p - 2k ≤ 2. Moreover, we prove that for 0 < r < 1 and p > 1, $${\parallel}f_r{\parallel}_{B_q}\,{\leq}\,r\,{\rho}{\mathcal{B}}(f)(\frac{1}{(1-r^2)(q-1)})^{1/q},$$ where fr(z) = f(rz) and ||·||ʙq is the Besov seminorm given by ║f║ʙq = (∫𝔻 |f'(z)|q(1-|z|2)q-2dA(z)). These results improve previous results of Clunie and MacGregor.

키워드

참고문헌

  1. A. Aleman and A.-M. Persson, Estimates in Mobius invariant spaces of analytic functions, Complex Var. Theory Appl. 49 (2004), no. 7-9, 487-510. https://doi.org/10.1080/02781070410001731657 
  2. J. G. Clunie and T. H. MacGregor, Radial growth of the derivative of univalent functions, Comment. Math. Helv. 59 (1984), no. 3, 362-375. https://doi.org/10.1007/ BF02566357 
  3. X. Cui, C. Wang, and K. Zhu, Area integral means of analytic functions in the unit disk, Canad. Math. Bull. 61 (2018), no. 3, 509-517. https://doi.org/10.4153/CMB2017-053-3 
  4. D. Girela and J. Pelaez, Integral means of analytic functions, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 459-469. 
  5. G. H. Hardy, The mean values of the modulus of an analytic function, Proc. London Math. Soc. 14 (1915), 269-277. 
  6. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer, New York, 2000. https://doi.org/10.1007/978-1-4612-0497-8 
  7. B. Korenblum, BMO estimates and radial growth of Bloch functions, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 99-102. https://doi.org/10.1090/S0273-0979-1985-15302-9 
  8. N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51 (1985), no. 2, 369-384. https://doi.org/10.1112/plms/s3-51.2.369 
  9. J. Mashreghi, The rate of increase of mean values of functions in Hardy spaces, J. Aust. Math. Soc. 86 (2009), no. 2, 199-204. https://doi.org/10.1017/S1446788708000414 
  10. A. Miralles and M. P. Maletzki, The constant of interpolation in Bloch type spaces, Mediterr. J. Math. 20 (2023), no. 6, Paper No. 307, 15 pp. https://doi.org/10.1007/s00009-023-02512-0 
  11. C. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften, 299, Springer, Berlin, 1992. https://doi.org/10.1007/978-3-662-02770-7 
  12. W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2331-2348. https://doi.org/10.1090/S0002-9947-96-01647-9 
  13. C. Wang, J. Xiao, and K. Zhu, Logarithmic convexity of area integral means for analytic functions II, J. Aust. Math. Soc. 98 (2015), no. 1, 117-128. https://doi.org/10.1017/S1446788714000457 
  14. J. Xiao, Geometric Qp Functions, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006. 
  15. J. Xiao and K. Zhu, Volume integral means of holomorphic functions, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1455-1465. https://doi.org/10.1090/S0002-9939-2010-10797-9 
  16. K. Zhu, Operator theory in function spaces, second edition, Mathematical Surveys and Monographs, 138, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/surv/138