DOI QR코드

DOI QR Code

ON H2-PROPER TIMELIKE HYPERSURFACES IN LORENTZ 4-SPACE FORMS

  • Firooz Pashaie (Department of Mathematics Faculty of Basic Sciences University of Maragheh)
  • Received : 2023.03.26
  • Accepted : 2024.02.29
  • Published : 2024.07.31

Abstract

The ordinary mean curvature vector field 𝗛 on a submanifold M of a space form is said to be proper if it satisfies equality Δ𝗛 = a𝗛 for a constant real number a. It is proven that every hypersurface of an Riemannian space form with proper mean curvature vector field has constant mean curvature. In this manuscript, we study the Lorentzian hypersurfaces with proper second mean curvature vector field of four dimensional Lorentzian space forms. We show that the scalar curvature of such a hypersurface has to be constant. In addition, as a classification result, we show that each Lorentzian hypersurface of a Lorentzian 4-space form with proper second mean curvature vector field is C-biharmonic, C-1-type or C-null-2-type. Also, we prove that every 𝗛2-proper Lorentzian hypersurface with constant ordinary mean curvature in a Lorentz 4-space form is 1-minimal.

Keywords

References

  1. K. Akutagawa and S. Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicata 164 (2013), 351-355. https://doi.org/10.1007/s10711-012-9778-1
  2. Y. Alexieva, G. Ganchev, and V. Milousheva, On the theory of Lorentz surfaces with parallel normalized mean curvature vector field in pseudo-Euclidean 4-space, J. Korean Math. Soc. 53 (2016), no. 5, 1077-1100. https://doi.org/10.4134/JKMS.j150381
  3. L. J. Alias and N. Ertug Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006), 113-127. https://doi.org/10.1007/s10711-006-9093-9
  4. A. Arvanitoyeorgos, F. Defever, and G. Kaimakamis, Hypersurfaces of E4s with proper mean curvature vector, J. Math. Soc. Japan 59 (2007), no. 3, 797-809. http://projecteuclid.org/euclid.jmsj/1191591858
  5. A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, and V. J. Papantoniou, Biharmonic Lorentz hypersurfaces in E41, Pacific J. Math. 229 (2007), no. 2, 293-305. https://doi.org/10.2140/pjm.2007.229.293
  6. B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), no. 2, 169-188.
  7. F. Defever, Hypersurfaces of ${\bar{E}}^4$ satisfying ${\Delta}{\vec{H}}={\lambda}{\vec{H}}$, Michigan Math. J. 44 (1997), no. 2, 355-363. https://doi.org/10.1307/mmj/1029005710
  8. I. M. Dimitric, Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 53-65.
  9. T. Hasanis and T. Vlachos, Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995), no. 1, 145-169. https://doi.org/10.1002/mana.19951720112
  10. S. M. B. Kashani, On some L1-finite type (hyper)surfaces in ℝn+1, Bull. Korean Math. Soc. 46 (2009), no. 1, 35-43. https://doi.org/10.4134/BKMS.2009.46.1.035
  11. P. Lucas and H. F. Ramirez-Ospina, Hypersurfaces in the Lorentz-Minkowski space satisfying Lkψ = Aψ + b, Geom. Dedicata 153 (2011), 151-175. https://doi.org/10.1007/s10711-010-9562-z
  12. M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), no. 1, 165-197. http://projecteuclid.org/euclid.pjm/1102706671 102706671
  13. B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
  14. F. Pashaie, An extension of biconservative timelike hypersurfaces in Einstein space, Proyecciones 41 (2022), no. 1, 335-351.
  15. F. Pashaie and S. M. B. Kashani, Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying Lkx = Ax+b, Bull. Iranian Math. Soc. 39 (2013), no. 1, 195-213.
  16. F. Pashaie and S. M. B. Kashani, Timelike hypersurfaces in the standard Lorentzian space forms satisfying Lkx = Ax + b, Mediterr. J. Math. 11 (2014), no. 2, 755-773. https://doi.org/10.1007/s00009-013-0336-3
  17. F. Pashaie, A. Mohammadpouri, Lk-biharmonic spacelike hypersurfaces in Minkowski 4-space 𝔼41, Sahand Comm. Math. Anal., 5:1 (2017), 21-30.
  18. A. Petrov, Einstein Spaces, translated from the Russian by R. F. Kelleher, translation edited by J. Woodrow, Pergamon, Oxford, 1969.
  19. R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geom. 8 (1973), no. 3, 465-477. https://doi.org/10.4310/jdg/1214431802
  20. F. Torralbo and F. Urbano, Surfaces with parallel mean curvature vector in 𝕊2 × 𝕊2 and ℍ2 × ℍ2, Trans. Amer. Math. Soc. 364 (2012), no. 2, 785-813. https://doi.org/10.1090/S0002-9947-2011-05346-8
  21. G. Wei, Complete hypersurfaces in a Euclidean space ℝn+1 with constant mth mean curvature, Differential Geom. Appl. 26 (2008), no. 3, 298-306. https://doi.org/10.1016/j.difgeo.2007.11.021