DOI QR코드

DOI QR Code

THE NORMING SET OF A SYMMETRIC n-LINEAR FORM ON THE PLANE WITH A ROTATED SUPREMUM NORM FOR n = 3, 4, 5

  • Sung Guen Kim (Department of Mathematics Kyungpook National University)
  • 투고 : 2023.10.24
  • 심사 : 2024.02.23
  • 발행 : 2024.07.31

초록

Let n ∈ ℕ, n ≥ 2. An element (x1, . . . , xn) ∈ En is called a norming point of T ∈ 𝓛(nE) if ||x1|| = ··· = ||xn|| = 1 and |T(x1, . . . , xn)| = ||T||, where 𝓛(nE) denotes the space of all continuous n-linear forms on E. For T ∈ 𝓛(nE), we define Norm(T) = {(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T}. Norm(T) is called the norming set of T. Let $0{\leq}{\theta}{\leq}{\frac{{\pi}}{4}}$ and ${\ell}^2_{{\infty},{\theta}}={\mathbb{R}}^2$ with the rotated supremum norm $${\parallel}(x,y){\parallel}_{({\infty},{\theta})}={\max}\{{\mid}x\;cos\;{\theta}+y\;sin\;{\theta}{\mid},\;{\mid}x\;sin\;{\theta}-y\;cos\;{\theta}|\}$$. In this paper, we characterize the norming set of T ∈ 𝓛(n2(∞,θ)). Using this result, we completely describe the norming set of T ∈ 𝓛s(n2(∞,θ)) for n = 3, 4, 5, where 𝓛s(n2(∞,θ)) denotes the space of all continuous symmetric n-linear forms on ℓ2(∞,θ). We generalizes the results from [9] for n = 3 and ${\theta}={\frac{{\pi}}{4}}$.

키워드

참고문헌

  1. R. M. Aron, C. Finet, and E. M. Werner, Some remarks on norm-attaining n-linear forms, Function Spaces (Edwardsville, IL, 1994), 19-28, Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.
  2. E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98. https://doi.org/10.1090/S0002-9904-1961-10514-4
  3. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. (2) 54 (1996), no. 1, 135-147. https://doi.org/10.1112/jlms/54.1.135
  4. S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. https://doi.org/10.1007/978-1-4471-0869-6
  5. M. Jimenez-Sevilla and R. Paya, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), no. 2, 99-112. https://doi.org/10.4064/sm-127-2-99-112
  6. S. G. Kim, The norming set of a bilinear form on l2, Comment. Math. 60 (2020), no. 1-2, 37-63.
  7. S. G. Kim, The norming set of a polynomial in 𝓟2l2), Honam Math. J. 42 (2020), no. 3, 569-576. https://doi.org/10.5831/HMJ.2020.42.3.569
  8. S. G. Kim, The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud. 55 (2021), no. 2, 171-180. https://doi.org/10.30970/ms.55.2.171-180
  9. S. G. Kim, The norming set of a symmetric 3-linear form on the plane with the l1-norm, N. Z. J. Math. 51 (2021), 95-108. https://doi.org/10.53733/177
  10. S. G. Kim, The norming sets of 𝓛(2l21) and 𝓛s(2l31), Bull. Transilv. Univ. Brasov Ser. III. Math. Comput. Sci. 2(64) (2022), no. 2, 125-149. https://doi.org/10.31926/but.mif.2022.2.64.2.10
  11. S. G. Kim, The norming sets of 𝓛(22h(w)), Acta Sci. Math. (Szeged) 89 (2023), no. 1-2, 61-79. https://doi.org/10.1007/s44146-023-00078-7