DOI QR코드

DOI QR Code

Synthesis of PMMA/PU Composite Material Incorporating Carbon Nanotubes for Antistatic Semiconductor IC Tray with Excellent Electrical Conductivity

우수한 전기전도성을 함유한 탄소나노튜브를 포함하는 반도체 IC Tray 대전방지용 PMMA/PU 복합소재 합성

  • Sangwook Park (Integrated Engineering, Department of Chemical Engineering, Kyung Hee University) ;
  • Hayoon Lee (Integrated Engineering, Department of Chemical Engineering, Kyung Hee University) ;
  • Changmin Lee (Integrated Engineering, Department of Chemical Engineering, Kyung Hee University) ;
  • Jongwook Park (Integrated Engineering, Department of Chemical Engineering, Kyung Hee University)
  • 박상욱 (경희대학교 화학공학과 융합공학전공) ;
  • 이하윤 (경희대학교 화학공학과 융합공학전공) ;
  • 이창민 (경희대학교 화학공학과 융합공학전공) ;
  • 박종욱 (경희대학교 화학공학과 융합공학전공)
  • Received : 2024.05.08
  • Accepted : 2024.05.15
  • Published : 2024.06.10

Abstract

To synthesize an antistatic material for use in semiconductor wafer transport trays, in-situ polymerization of poly(methyl methacrylate) (PMMA) and polyurethane (PU) incorporating carbon nanotubes was designed and conducted. The newly synthesized composites were evaluated for their thermal and electrical conductivity properties under conditions mimicking commercial device manufacturing processes. Comparative analysis of their respective performances revealed that both PMMA and PU containing carbon nanotubes exhibited enhanced thermal properties and superior electrical conductivity as the nanotube content increased. Morphology of the composites synthesized via in-situ polymerization was confirmed to be excellent through FE-SEM analysis, demonstrating good dispersibility. Both PMMA and PU incorporating carbon nanotubes showed outstanding surface resistance values of 103 Ω/□, indicating their suitability as antistatic materials for semiconductor applications.

반도체 웨이퍼 운반용 tray에 사용하기 위한 반도체 대전방지용 물질을 합성하기 위해 탄소나노튜브를 포함하는 폴리(메틸메타크릴레이트)(PMMA)와 폴리우레탄(PU)의 in-situ polymerization이 설계되고 진행되었다. 새롭게 합성된 복합체는 상업용 장치 제조 공정을 모방한 조건에서 열적특성과 전기전도성 특성을 평가하였다. 이들의 관련 성능을 비교한 결과, 탄소나노튜브를 함유하고 있는 PMMA와 PU 모두 탄소나노튜브 함량이 올라갈수록 열적인 특성이 향상되었으며, 전기전도성 역시 함량이 올라갈수록 증가하는 우수한 성능을 나타내었다. In-situ polymerization을 통한 복합체의 morphology는 FE-SEM을 통하여 확인한 결과 상용성이 우수한 상태로 확인되었다. 탄소나노튜브를 포함하는 PMMA와 PU 모두 반도체 대전방지용 물질로서 사용할 수 있는 우수한 표면저항 값인 103 Ω/□의 특성 결과를 확인할 수 있었다.

Keywords

Acknowledgement

This work was supported by the GRRC program of Gyeonggi province. [(GRRCKYUNGHEE2023-B03), Development of ultra-fine process materials based on the sub-nanometer class for the next-generation semiconductors]

References

  1. J. W. Ha and K. H. Whang, Formulation of a thermally curable coating composition with anti-static function, J. Korean Ind. Eng. Chem., 12, 27-33 (2001). 
  2. S. H. Hong, M. H. Kim, C. K. Hong, D. S. Jung, and S. E. Shim, Encapsulation of multi-walled carbon nanotubes by poly (4-vinylpyridine) and its dispersion stability in various solvent media, Synthetic Met., 158, 900 (2008). 
  3. C. H. Yoon and H. S. Lee, Carbon nanotube composite, Polym. Sci. Technol., 18, 4 (2007). 
  4. S. Park, M. Cho, S. Lim, H. Choi, and M. Jhon, Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization, Macromol. Rapid Commun., 24, 1070 (2003). 
  5. X. Xie and L. Gao, Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method, Carbon, 45, 2365 (2007). 
  6. R. B. Mathur, S. Pande, B. P. Singh, and T. L. Dhami, Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites, Polym. Compos., 29, 717 (2008). 
  7. A. I. Oliva-Aviles, F. Aviles, and V. Sosa, Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field, Carbon, 49, 2989 (2011). 
  8. J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite, Carbon, 44, 2701 (2006). 
  9. T. Uchida and S. Kumar, Single wall carbon nanotube dispersion and exfoliation in polymers, J. Appl. Polym. Sci., 98, 985 (2005). 
  10. V. Datsyuka, M. Kalyvaa, K. Papagelisb, J. Partheniosa, D. Tasisb, A. Siokoua, I. Kallitsisa, and C. Galiotisa, Chemical oxidation of multiwalled carbon nanotubes, Carbon, 46, 833 (2008). 
  11. S. Berber, Y. K. Kwon, and D. Tomanek, Unusually high thermal conductivity in carbon nanotubes, Phys. Rev. Lett., 84, 4613 (2000). 
  12. Y. Gao, Y. Wang, J. Shi, H. Bai, and B. Song, Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly (ethylene terephthalate), Polym. Test., 27, 179 (2008). 
  13. S. M. Yuen, C. C. M. Ma, Y. Y. Lin, and H. C. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite, Comp. Sci. Technol., 67, 2564 (2007). 
  14. J. Ryszkowska, Quantitative image analysis of polyurethane/carbon nanotube composite micostructures, Mater. Charact., 60, 1127 (2009). 
  15. S. Park, K. Cho, and C. Choi, Effect of fluorine plasma treatment on PMMA and their application to passive optical waveguides, J. Colloid Interf. Sci., 258, 424 (2003). 
  16. M. J. Galante, P. A. Oyanguren, K. Andromaque, P. M. Frontini, and R. J. J. Williams, Blends of epoxy/anhydride thermosets with a high-molar-mass poly(methyl methacrylate), Polym. Int., 48, 642 (1999). 
  17. T. C. Chang, C. L. Liao, K. H. Wu, H. B. Chen, and J. C. Yang, Degradation of some poly(methylphenylsiloxane)-poly(methyl methacrylate) interpenetrating polymer networks, Polym. Degrad. Stab., 66, 127 (1999). 
  18. Y. T. Shin, M. G. Hong, J. J. Choi, W. K. Lee, G. B. Lee, B. W. Yoo, M. G. Lee, and K. C. Song, Preparation and properties of aminosilane terminated waterborne polyurethane, Korean Chem. Eng. Res, 48, 434-439 (2010). 
  19. M. G. Hong, Y. T. Shin, J. J. Choi, W. K. Lee, G. B. Lee, B. W. Yoo, M. G. Lee, and K. C. Song, Preparation of silylated waterborne polyurethane/silica nanocomposites using colloidal silica, Korean Chem. Eng. Res., 48, 561-567 (2010). 
  20. G. Mittal, K. Y. Rhee, and S. J. Park, The effects of cryomilling CNTs on the thermal and electrical properties of CNT/PMMA composites, Polymers, 8, 169 (2016). 
  21. M. Jeon, Development of Compound Material for IC Tray Using Recycled Trays, Korea Planning & Evaluation Institute of Industrial Technology, Daegu, Korea (2012), https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201200008209. 
  22. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, and S. Zhu, Study on poly (methyl methacrylate)/carbon nanotube composites, Mater. Sci. Eng. A, 271, 395(1999). 
  23. Z. Li, S. Chen, S. Nambiar, Y. Sun, M. Zhang, W. Zheng, and J. T. W. Yeow, PMMA/MWCNT nanocomposite for proton radiation shielding applications, Nanotechnology, 27, 234001 (2016). 
  24. Y. Kanbur and U. Tayfun, Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites, J. Thermoplast. Compos. Mater., 31, 1661-1675 (2018).  https://doi.org/10.1177/0892705717743292