DOI QR코드

DOI QR Code

Performance Relationship of Iron-Based Anolyte According to Organic Compound Additives and Polyoxometalate-Based Catholyte in an Aqueous Redox Flow Battery

유기화합물 첨가제에 따른 철 기반 양극과 polyoxometalate 음극 기반 수계 레독스 흐름 전지의 성능 관계

  • Seo Jin Lee (Department of Chemical Engineering, Kangwon National University) ;
  • Byeong Wan Kwon (Department of Chemical Engineering, Kangwon National University)
  • 이서진 (강원대학교(삼척캠퍼스) 화학공학전공) ;
  • 권병완 (강원대학교(삼척캠퍼스) 화학공학전공)
  • Received : 2024.04.20
  • Accepted : 2024.06.03
  • Published : 2024.06.10

Abstract

In this study, an aqueous-based redox flow battery (RFB) was constructed using tungstosilic acid (TSA), which is a kind of polyoxometalate, as the negative electrode active material and iron chloride (FeCl3) as the positive electrode active material in a sulfuric acid (H2SO4) supporting electrolyte. As a result of the cell's performance, it exhibited capacity fading and low energy efficiency. To address these issues, malic acid (MA), an organic additive, was introduced to the positive electrode active material and then tested for electrochemical properties and single cell performance. The malic acid in the iron chloride aqueous solution is working as a chelate agent, and two carboxyl groups are effectively coordinated with iron ions. It was found that MA reduced the electrolyte resistance of the positive electrode active material, leading to chemical stabilization and an increase in capacity and energy efficiency.

본 연구에서는 음극 활물질로 폴리옥소메탈레이트(polyoxometalate, POM)인 규소텅스텐산(tungstosilic acid, TSA)과 양극 활물질로 염화 철(iron chloride)을 사용하고, 지지 전해질 황산(H2SO4) 수용액을 이용한 수계 레독스 흐름 전지(redox flow battery, RFB)를 구성하였다. 운전 결과에 따르면 용량 저하와 낮은 에너지 효율을 보이는 문제점이 있었다. 이와 같은 문제를 해결하기 위해서 양극 활물질에 유기화합물 첨가제인 말산(malic acid)를 첨가하여, 첨가제에 따른 전기화학적 특성과 셀 충방전 테스트를 진행하였다. 말산은 염화 철 수용액에서 킬레이트제로 작용하였으며, 말산내 두 개의 카르복실기가 철 이온과 효과적으로 배위결합을 형성한다. 이는, 양극 활물질인 염화 철의 전해질 저항을 줄어들게 하여 화학적으로 안정화되어 용량과 에너지 효율의 증가를 이끌어냈다.

Keywords

Acknowledgement

이 논문은 정부(교육부)의 재원으로 한국연구재단의 지원(2022RIS-005)와 정부(교육부)의 재원으로 한국연구재단의 지원(No.2021R1l1A3060236)에 의하여 연구하였음.

References

  1. J. Mitali, S. Dhinakaran, and A. A. Mohamad, Energy storage systems: A review, Energy Storage Sav., 1, 166-216 (2022).
  2. T. Feng, H. Wang, Y. Liu, J. Zhang, Y. Xiang, and S. Lu, A redox flow battery with high capacity retention using 12-phosphotungstic acid/iodine mixed solution as electrolytes, J. Power Sources, 436, 226831 (2019).
  3. I. N. Gumerova and A. Rompel, Synthesis, structures and applications of electron-rich polyoxometalates, Nat. Rev. Chem., 2, 0112 (2018).
  4. K. L. Hawthorne, J. S. Wainright, and R. F. Savinell, Studies of iron-ligand complexes for an all-iron flow battery application, J. Electrochem. Soc., 161, A1662-A1671 (2014).
  5. S. Belongia, X. Wang, and X. Zhang, Progresses and perspectives of all-iron aqueous redox flow batteries, Adv. Funct. Mater., 34, 2302077 (2024).
  6. Alfonso Saez, V. Montiel, and A. Aldaz, An acid-base electrochemical flow battery as energy storage system, Int. J. Hydrog. Energy, 41, 17801-17806 (2016).
  7. B. S. Jayathilake, E. J. Plichta, M. A. Hendrickson, and S. R. Narayanan, Improvements to the coulombic efficiency of the iron electrode for an all-iron redox-flow battery, J. Electrochem. Soc., 165, A1630-A1638 (2018).
  8. X. Liu, T. Li, Z. Yuan, and X. Li, Low-cost all-iron flow battery with high performance towards long-duration energy storage, J. Energy Chem., 73, 445-451 (2022).
  9. Y. Cao, J.-J. J. Chen, and M. A. Barteau, Systematic approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries, J. Energy Chem., 50, 115-124 (2020).
  10. C. Xie, Y. Duan, W. Xu, H. Zhang, and X. Li, A low-cost neutral zinc-iron flow battery with high energy density for stationary energy storage, Angew. Chem. Int. Ed., 56, 14953-14957 (2017).
  11. H. D. Pratt III , N. S. Hudak, X. Fang, and T. M. Anderson, A polyoxometalate flow battery, J. Power Sources, 236, 259-264 (2013).
  12. J. Friedl, M. V. Holland-Cunz, F. Cording, F. L. Pfanschilling, C. Wills, W. McFarlane, B. Schricker, R, Fleck, H. Wolfschmidt, and U. Stimming, Asymmetric polyoxometalate electrolytes for advanced redox flow batteries, Energy Environ. Sci., 11, 3010-3018 (2018).
  13. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner's guide to cyclic voltammetry, J. Chem. Educ., 95, 197-206 (2018).
  14. H. E. Lee, D. E. Kim, C. J. Kim, and T. Kim, A Study on the electrochemical performance of Fe-V chloric/sulfuric mixed acid redox flow battery depending on electrode activation temperature, Appl. Chem. Eng., 31, 639-645 (2020).
  15. S. Xiao, L. Yu, L. Wu, L. Liu, X. Qiu, and J. Xi, Broad temperature adaptability of vanadium redox flow battery-Part 1: Electrolyte research, Electrochim. Acta, 187, 525-534 (2016).
  16. S. E. Waters, B. H. Robb, and M. P. Marshak, Effect of chelation on iron-chromium redox flow batteries, ACS Energy Lett., 5, 1758-1762 (2020).
  17. J. Liu, S. Liu, Z. He, H. Han, and Y. Chen, Effects of organic additives with oxygen-and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery, Electrochim. Acta, 130, 314-321 (2014).
  18. Y. J. Cho and B. W. Kwon, Relationship between concentration and performance of supporting electrolyte of redox flow battery using polyoxometalate, Appl. Chem. Eng., 34, 175-179 (2023).
  19. H. E. Lee, D. T. Linh, W. K. Lee, and T. Kim, Study on the improvement of electrochemical performance by controlling the surface characteristics of the oxygen electrode porous transport layer for proton exchange membrane water electrolysis, Appl. Chem. Eng., 32, 332-339 (2021).