DOI QR코드

DOI QR Code

Antibacterial Properties of Extracts from Abies holophyllaand Pinus koraiensisNeedles Against Escherichia coli and Staphylococcus aureus

전나무와 잣나무 잎 추출물의 대장균과 황색포도상구균에 대한 항균특성

  • Young Woo Choi (Department of Chemical Engineering, Dankook University) ;
  • Seung Bum Lee (Department of Chemical Engineering, Dankook University)
  • 최용우 (단국대학교 화학공학과) ;
  • 이승범 (단국대학교 화학공학과)
  • Received : 2024.05.22
  • Accepted : 2024.05.30
  • Published : 2024.06.10

Abstract

In this study, functional substances with antibacterial properties were extracted from the needles of Abies holophylla and Pinus koraiensis, and optimized using the central composite design-response surface methodology (CCD-RSM). The optimal extraction conditions for Abies holophylla were an extraction temperature of 59.5 ℃ and an ethanol/ultrapure water volume ratio of 69.5 vol.%, resulting in an extraction yield of 13.5% and inhibition diameters of 11.6 mm against Escherichia coli (E. coli) and 9.3 mm against Staphylococcus aureus (S. aureus). For Pinus koraiensis, the optimal extraction conditions were an extraction temperature of 59.2 ℃ and an ethanol/ultrapure water volume ratio of 67.8 vol.%, resulting in an extraction yield of 4.8% and inhibition diameters of 7.9 mm against E. coli and 12.5 mm against S. aureus. The actual experimental results under these optimal conditions showed that an extraction yield from Abies holophylla needles was 13.0% and an inhibition diameter of 11.7 mm against E. coli and 9.2 mm against S. aureus, indicating an error rate of approximately ± 2.3%. For Pinus koraiensis needles, the extraction yield was 5.1%, with inhibition diameters of 7.5 mm against E. coli and 12.3 mm against S. aureus, indicating an error rate of ± 4.23%.

본 연구에서는 전나무와 잣나무 잎으로부터 항균특성을 갖는 기능성 물질을 추출한 후 반응표면분석법 중 중심합성 계획법(CCD-RSM)을 이용하여 최적화하였다. 최적 추출 조건은 전나무의 경우 추출온도(59.5 ℃)와 주정/초순수 부피비(69.5 vol.%)이었으며, 이때 반응치는 추출수율(13.5%), 대장균 억제직경(11.6 mm), 황색포도상구균 억제직경(9.3 mm)로 산출되었다. 또한 잣나무의 경우에는 최적 추출조건인 추출온도(59.2 ℃)와 주정/초순수 부피비(67.8 vol.%)에 서 추출수율(4.8%), 대장균 억제직경(7.9 mm), 황색포도상구균 억제직경(12.5 mm)로 산출되었다. 각 천연물의 최적조건에서 실제 실험 결과 전나무 잎의 추출수율은 13.0%, 대장균 억제직경은 11.7 mm, 황색포도상구균 억제직경은 9.2 mm로 약 ± 2.30% 오차율을 나타내며, 잣나무 잎의 추출수율은 5.1%, 대장균 억제직경은 7.5 mm, 황색포도상구균 억제직경은 12.3 mm로 ± 4.23% 오차율을 나타내었다.

Keywords

References

  1. I. S. Chang, Present and future of functional cosmetics, J. Soc. Cosmet. Scientists Korea, 29, 149-177 (2003).
  2. E. Y. Choi and Y. J. Kim, The effect of grapefruit seed extract by cosmetic preservatives, J. Invest. Cosmetol., 8, 241-251 (2010).
  3. K. H. Nam, K. Y. Joo, E. H. Choi, J. B. Jung, and P. S. Park, Distribution and natural regeneration of Abies holophylla in plantations in gapyeong, J. Korean Soc. For. Sci., 110, 341-354 (2021).
  4. J. E. Kim, W. Y. Kim, J. W. Kim, H. S. Park, S. H. Lee, S. Y. Lee, M. J. Kim, A. R. Kim, and S. N. Park, Antibacterial, antioxidative activity and component analysis of Pinus koraiensis leaf extracts, J. Soc. Cosmet. Scientists Korea, 36, 303-314 (2010).
  5. H. S. Sung, J. O. Kang, M. A. Lee, J. W. Lee, H. K. Lee, M. K. Lee, J. H. Lim, and M. N. Kim, Clarithromycin and amoxicillin susceptibility testing of Helicobacter pylori by disk diffusion method, Ann. Clin. Microbiol., 12, 30-36 (2009).
  6. S. B. Lee, H. S. Jang, and I. K. Hong, Optimization of extraction process for antioxidant from Persimmon leaf and thistle using response surface methodology, Appl. Chem. Eng., 28, 442-447 (2017).
  7. G. H. Ryu and J. P. Remon, Extraction yield of extruded ginseng and granulation of its extracts by cold extrusion-spheronization, J. Korean Soc. Food Sci. Nutr., 33, 899-904 (2004).
  8. W. H. Moon and K. D. Yook, Antimicrobial effect of garlic extract against pathogenic bacteria, J. Digit. Converg., 12, 477-484 (2014).
  9. H. S. Jang, X. Ma, and S. B. Lee, Preparation of cosmeceuticals containing wheat sprout extracts: Optimization of emulsion stability using CCD-RSM, Appl. Chem. Eng., 32, 320-325 (2021).
  10. K. H. Lee, A. J. Kim, and M. J. Kim, Optimization of roasting condition to improve quality of freeze-dried silkworms using RSM, Asian J. Beauty Cosmetol., 18, 95-106 (2020).
  11. C. Pan, G. Kora, W. H. McDonald, L. T. David, C. V. Nathan, B. H. Gregory, A. P. Dale, F. S. Nagiza, and L. H. Robert, ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation, Anal. Chem., 78, 7121-7131 (2006).
  12. D. Bertasius, K. N. Nechval, N. A. Nechval, M. Purgailis, and K. Rozite, Optimization of yield management under constrains and uncertainty via statistical inference equivalence principle, Appl. Econ. Syst. Res., 1, 91-102 (2007).
  13. J. R. Pycke, Multivariate extentions of the Anderson-Darling process, Stat. Probabil. Lett., 63, 387-399 (2003).
  14. J. C. Park and M. G. Kim, Comparative analysis of the TPTT, MPMT and RSM models, Korean Chem. Eng. Res., 26, 194-204 (1988).
  15. I. K. Hong, Microwave mediated production of fame from waste cooking oil: Optimization of process parameters by RSM, Appl. Chem. Eng., 31, 172-178 (2020).
  16. E. S. Seong, S. K. Kim, J. W. Lee, S. H. Choi, J. H. Yoo, J. D. Lim, J. K. Na, and C. Y. YOO, Antioxidant and antibacterial activities of the byproducts of Abies holophylla extract, Korean J. Medicinal Crop Sci., 26, 134-140 (2018).
  17. H. J. Hwang, J. S. Yu, H. Y. Lee, D. J. Kwon, W. Han, S. Il. Heo, and S. Y. Kim, Evaluations on deodorization effect and anti-oral microbial activity of essential oil from Pinus koraiensis, Korean J. Plant Res., 27, 1-10 (2014).