DOI QR코드

DOI QR Code

CFD Analysis Study on Aqueous Film Foaming Foam Injection Optimization to Respond to Oil Fires in Naval Ship Compartment

해군 함정 격실 유류화재 대응을 위한 수성막포 분사 최적화에 대한 CFD 해석 연구

  • Kil-Song Jeon (Department of Fire Researcher Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Hwi-Seong Kim (Department of Fire Researcher Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Jae-Ung Sim (Department of Fire Researcher Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Yong-Ho Yoo (Department of Fire Researcher Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Jin-Ouk Park (Department of Fire Researcher Institute, Korea Institute of Civil Engineering and Building Technology)
  • 전길송 (한국건설기술연구원 화재안전연구소) ;
  • 김휘성 (한국건설기술연구원 화재안전연구소) ;
  • 심재웅 (한국건설기술연구원 화재안전연구소) ;
  • 유용호 (한국건설기술연구원 화재안전연구소) ;
  • 박진욱 (한국건설기술연구원 화재안전연구소)
  • Received : 2024.04.23
  • Accepted : 2024.05.29
  • Published : 2024.06.10

Abstract

When a fire occurs on a naval vessel, rapid suppression and control are essential to mitigate potential human and material losses. Due to the nature of naval vessels, the risk of fuel fires is significant, making the use of aqueous film-forming foam (AFFF) crucial for effective fire suppression. Additionally, the possibility of fires occurring within compartments on the vessel must also be considered. Understanding the trajectory and application range of AFFF in such environments is vital, necessitating the design of firefighting systems tailored to compartmental conditions. In this study, an analysis was conducted to investigate the feasibility of applying spray height and angle for AFFF using computational fluid dynamics (CFD) methodology as a validation tool. Based on these findings, CFD analysis results applicable to compartment environments on naval vessels were obtained. These results will serve as the foundation for the development of firefighting systems capable of promptly responding to fuel fires within naval vessel compartments.

해군 함정에서 화재가 발생하면 잠재적인 인적, 물적 손실을 완화하기 위해 신속한 진압과 통제가 필수적이다. 해군 함정의 특성상 유류화재 발생 가능성이 크며 이에 유류화재 대응에 탁월한 수성막포(AFFF)를 사용하는 것이 화재 진압에 매우 중요하다. 또한 함정의 격실 내에서 화재가 발생하는 상황 역시 고려해야 한다. 이러한 상황에서 수성막포의 궤적과 적용 범위를 이해하는 것이 중요하므로 격실 환경에 맞는 소화 시스템 설계가 반드시 필요하다. 본 연구에서는 수성막포에 대한 전산유체역학 (CFD) 방법론을 검증하기 위한 해석으로 분사 높이 및 각도에 대한 적용 가능성을 조사하였다. 이러한 내용을 바탕으로 하여 함정 격실에 적용가능한 CFD 해석 결과를 얻었다. 이 결과는 해군 함정 격실 내 유류 화재에 신속하게 대응할 수 있는 소화 시스템 개발의 기반이 될 것이다.

Keywords

Acknowledgement

본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다. (협약번호 UM23512RD5)

References

  1. S. Y. Kwon, S. H. Lee, and D. H. Jeon, three-dimensional fluid flow analysis in taylor reactor using computational fluid dynamics, Appl. Chem. Eng., 28, 448-453 (2017).
  2. Y. K. Lim, J. Y. Kim, Y. G. Na, and J. R. Kim, Quantitative analysis of fuel in engine oil, Appl. Chem. Eng., 28, 714-719 (2017).
  3. E. Jin and Y. J. Chung, Assessment of fire risk rating for wood species in fire event, Appl. Chem. Eng., 32, 423-430 (2021).
  4. H. G. Kim and Y. S. Lee, A Study on fire explosion characteristics via physico-chemical analysis of petroleum residues, Appl. Chem. Eng., 30, 556-561 (2019).
  5. Y. J. Chung, E. Jin, and J. S. You, Evaluation of smoke risk and smoke risk rating for combustible substances from fire, Appl. Chem. Eng., 32, 197-204 (2021).
  6. M. Abrofarakh and H. Moghadam, Investigation of thermal performance and entropy generation rate of evacuated tube collector solar air heater with inserted baffles and metal foam: A CFD approach, Renew. Energy, 223, 120022 (2024).
  7. D. S. Kim, J. H. Kwark, D. S. Kang, and B. S. Son, Development of fire extinguishing system suitable for unmanned engine room of a small ship, Fire Sci. Eng., 20, 96-100 (2006).
  8. J. H. Seung, Y. C. Park, Y. H. Lee, and Y. C. Ryu, Numerical investigation of the effect of flow passage variation on the projection distance of the foam monitor, J. Korea Academia-Industrial Cooperation Soc., 17, 244-251 (2016).
  9. Y. T. Han, D. H. Kim, and S. P. Kwon., An experimental study on the automobile engine room fire using the extinguishing agents, Fire Sci. Eng., 28, 1-7 (2014).
  10. J. R. Kim, H. K. Ku, S. S. Oh, Develpment of fire extinguisher valves for tracked vehicle using Novec1230. J. Korea Academia- Industrial Cooperation Soc., 12, 1539-1546 (2011).
  11. J. W. Lee, W. S. Lim, and D. H. Rie, A study on B Class fire extinguishing performance of air ratio in the compressed air foam system, Fire Sci. Eng., 27, 8-14 (2013).
  12. K. S. Jeon, H. S. Kim, J. H. You, Y. H. You, and J. O. Park, Research on the rheological properties of aqueous film forming foam to respond to ship oil fires, Appl. Chem. Eng., 34, 603-607 (2023).
  13. K. C. Ro, Effect of nozzle shape and injection pressure on performance of hybrid nozzle, J. Korea Academia-Industrial Cooperation Soc., 18, 74-79 (2017).
  14. Y. W. Son, J. H. Lee, and S. M. Chang, CFD Analysis on the nozzle of high viscid row material for urethane foam, KSCFE., 22, 79-85 (2017).
  15. Y. H. Jang and S. S. Kim., A study on the optimal operating conditions for an unreacted hydrogen oxidation-heat recovery system for the safety of the hydrogen utilization process, Appl. Chem. Eng., 34, 307-312 (2023).
  16. J. W. Kim and M. K. Lee., A Comparison on detected concentrations of lpg leakage distribution through actual gas release, CFD (FLACS) and calculation of hazardous areas, Appl. Chem. Eng., 32, 102-109 (2021).
  17. Y. S. Yun, J. S. Ju, and S. J. Lee, Comparison of design concepts for four different entrained-bed coal gasifier types with CFD analysis, Appl. Chem. Eng., 22, 566-574 (2011).
  18. Y. H. Jang, H. D. Park, K. P. Lim, H. S. Park, J. H. Kim, and H. T. Cho, Analysis on the heat exchange efficiency of kraft recovery boiler by nose arch structure using CFD, Appl. Chem. Eng., 32, 149-156 (2021).
  19. H. J. Kim and J. P. Park, Assessment of CFD estimation capability for the local loss coefficients of sudden contraction and expansion, Appl. Chem. Eng., 21, 258-264 (2010).
  20. C. H. Joo, H. D. Park, H. T. Cho, H. W. Kim, and W. J. Cho, Optimization of plain jacked vessel design in adhesive production process using computational fluid dynamics, Appl. Chem. Eng., 31, 596-602 (2020).
  21. S. H. Kim, M. K. Lee, J. W. Kim, and J. H. Lee, Diffusion range and pool formation in the leakage of liquid hydrogen storage tank using CFD tools, Appl. Chem. Eng., 33, 653-660 (2022).
  22. J. H. Yoon, Y. B. Kim, and H. W. Song, Effect of inlet shape on thermal flow characteristics for waste gas in a thermal decomposition reactor of scrubber system, Appl. Chem. Eng., 29, 510-518 (2018).
  23. A. Jafarizadeh, M. Ahmadzadeh, M. Panjepour, and S. Mahmoudzadeh, Pressure gradient computation for foams with different geometric propertIES: Based on ann and svr machine learning model and trained by CFD simulations, J. Porous Media, 26, 49-76 (2023).
  24. B. J. Park, H. J. Sin, Y. H. Yoo, J. U. Park, and H. S. Kim, Evaluation test of applicability of compressed air foam fire extinguishing system for train fire at rescue station in Subsea tunnel, J. Korean Tunn Undergr. Sp. Assoc., 18, 413-418 (2016).
  25. A. Jafarizadeh, M. A. Ahmadzadeh, M. Panjepour, and S. Mahmoudzadeh, A new approach for predicting the pressure drop in various types of metal foams using a combination of CFD and machine learning regression models, Transp. Porous Media., 147, 59-91 (2023).
  26. J. U. Park, Y. H. Yoo, and H. S. Kim, Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces, J. Korean Tunn. Undergr. Sp. Assoc., 23, 503-516 (2016).