DOI QR코드

DOI QR Code

Two-Dimensional Nanomaterials Used as Fillers in Mixed-Matrix Membranes for Effective CO2 Separation

효과적인 CO2 분리를 위한 혼합 기질 분리막 충진 소재로서의 2차원 나노물질

  • Khirul Md Akhte (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Hobin Jee (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Euntae Yang (Department of Marine Environmental Engineering, Gyeongsang National University)
  • ;
  • 지호빈 (경상국립대학교 해양환경공학과) ;
  • 양은태 (경상국립대학교 해양환경공학과)
  • Received : 2024.04.29
  • Accepted : 2024.05.24
  • Published : 2024.06.10

Abstract

In recent years, significant research has been conducted to enhance the performance of existing membranes for efficient CO2 capture, aiming to expand their application in carbon capture processes. Membrane technology has emerged as a promising carbon capture approach to addressing the net-zero challenge due to its cost and energy efficiency, continuous operation, and compact process size. Among the various types of membranes studied, mixed-matrix membranes (MMMs) have been proposed as an alternative to conventional membranes to enhance the efficiency of gas separation processes. Various common 2D nanomaterials, characterized by their ease of modification, functionalization, and compatibility with other materials, have been used to create efficient MMMs for gas separation. This article comprehensively reviews the recent developments in MMMs using 2D nanomaterials. It also discusses the current challenges and prospects of 2D nanomaterial-based membranes for CO2 separation and capture.

최근, 기존 분리막의 성능을 향상시켜 CO2 분리를 효율적으로 수행하기 위한 중요한 연구가 진행되고 있다. 이는 탄소포집 공정에서의 활용을 확대하는 것을 목표로 하고 있다. 분리막 기술은 비용 및 에너지 효율성, 연속 운전, 작은 공정 크기 등의 장점으로 인해 탄소제로 이슈에 대처하는 유망한 탄소 포집 기술로 부상하고 있다. 연구된 여러 종류의 분리막 중 혼합기질막(mixed-matrix membrane, MMM)이 전반적인 가스 분리 공정의 효율을 향상시킬 수 있는 전통적인 분리막의 대안으로 제안되었다. 2D 나노소재는 쉬운 개질과 기능화, 다른 재료와의 결합 등 특징적인 성질로 인해 다양한 일반적인 2D 나노소재들이 가스 분리를 위한 효율적인 MMMs 제작에 사용되고 있다. 본 논문은 2D 나노소재를 사용한 MMMs 분야의 최근 발전을 검토하였다. 또한, CO2 분리 및 포집을 위한 2D 나노소재 기반 분리막의 현재 도전과 전망을 논의하였다.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1C1C1013172, RS-2023-00259994, and RS-2023-00217317).

References

  1. M. I. F. Zainuddin, and A. L. Ahmad, Mixed-matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture, J. CO2 Util., 62, 102094 (2022).
  2. D. M. D'Alessandro, B. Smit, and J. R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082 (2010).
  3. P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, and T. E. Muller, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci., 5, 7281-7305 (2012).
  4. B. Marzeion, G. Kaser, F. Maussion, and N. Champollion, Limited influence of climate change mitigation on short-term glacier mass loss, Nat. Clim. Change, 8, 305-308 (2018).
  5. Y. Z. Ghouali, M. Belmokaddem, M. A. Sahraoui, and M. S. Guellil, Factors affecting CO2 emissions in the BRICS countries: A Panel Data Analysis, Proc. Econ. Financ., 26, 114-125 (2015).
  6. D. X. Yang, Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lu, First global carbon dioxide maps produced from tansat measurements, Adv. Atmos. Sci., 35, 621-623 (2018).
  7. A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359, 115-125 (2010).
  8. Y. X. Chen, and W. S. W. Ho, High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas, J. Membr. Sci., 514, 376-384 (2016).
  9. J. H. Gao, Y. Song, C. Y. Jia, L. Y. Sun, Y. Wang, Y. X. Wang, M. J. Kipper, L. J. Huang, and J. G. Tang, A comprehensive review of recent developments and challenges for gas separation membranes based on two-dimensional materials, Flatchem, 43, 100594 (2024).
  10. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol., 188, 431-450 (2017).
  11. T. Li, Y. C. Pan, K. V. Peinemann, and Z. P. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425, 235-242 (2013).
  12. C. F. Zhang, Y. Y. Wu, Y. Zhang, Y. X. Bai, J. Gu, and Y. P. Sun, Poly(ether-b-amide)/ethylene glycol monophenyl ether gel membrane with superior CO2/N2 separation performance fabricated by thermally induced phase separation method, J. Membr. Sci., 508, 136-145 (2016).
  13. G. Xu, F. F. Liang, Y. P. Yang, Y. Hu, K. Zhang, and W. Y. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies, 7, 3484-3502 (2014).
  14. G. Xu, L. Li, Y. P. Yang, L. H. Tian, T. Liu, and K. Zhang, A novel CO2 cryogenic liquefaction and separation system, Energy, 42, 522-529 (2012).
  15. S. Sridhar, B. Smitha, and T. M. Aminabhavi, Separation of carbon dioxide from natural gas mixtures through polymeric membranes - A review, Sep. Purif. Rev., 36, 113-174 (2007).
  16. N. Y. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, Advances in high permeability polymeric membrane materials for CO2 separations, Energy Environ. Sci., 5, 7306-7322 (2012).
  17. J. Y. Xu, H. Y. Wu, Z. Wang, Z. H. Qiao, S. Zhao, and J. X. Wang, Recent advances on the membrane processes for CO2 separation, Chin. J. Chem. Eng., 26, 2280-2291 (2018).
  18. S. Roussanaly, and R. Anantharaman, Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources, Chem. Eng. J., 327, 618-628 (2017).
  19. M. Pera-Titus, Porous inorganic membranes for CO2 capture: present and prospects, Chem. Rev., 114, 1413-1492 (2014).
  20. S. F. Wang, X. Q. Li, H. Wu, Z. Z. Tian, Q. P. Xin, G. W. He, D. D. Peng, S. L. Chen, Y. Yin, Z. Y. Jiang, and M. D. Guiver,Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci., 9, 1863-1890 (2016).
  21. X. C. Yang, W. J. Zheng, Y. Xi, W. X. Guan, X. M. Yan, X. H. Ruan, C. H. Ma, Y. Dai, and G. H. He, Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation, J. Membr. Sci., 624, 119046 (2021).
  22. Z. G. Wang, H. T. Ren, S. X. Zhang, F. Zhang, and J. Jin, Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation, J. Mater. Chem. A., 5, 10968-10977 (2017).
  23. Z. K. Li, Y. Y. Wei, X. Gao, L. Ding, Z. Lu, J. J. Deng, X. F. Yang, J. Caro, and H. H. Wang, Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets, Angew. Chem. Int. Ed., 59, 9751-9756 (2020).
  24. M. Kalaj, K. C. Bentz, S. Ayala, J. M. Palomba, K. S. Barcus, Y. Katayama, and S. M. Cohen, MOF-polymer hybrid materials: from simple composites to tailored architectures, Chem. Rev., 120, 8267-8302 (2020).
  25. Z. G. Wang, H. T. Ren, S. X. Zhang, F. Zhang, and J. Jin, Carbon molecular sieve membranes derived from troger's base-based microporous polyimide for gas separation, ChemSusChem, 11, 916-923 (2018).
  26. Y. H. Chu, D. Yancey, L. R. Xu, M. Martinez, M. Brayden, and W. Koros, Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations, J. Membr. Sci., 548, 609-620 (2018).
  27. B. Gye, I. Kammakakam, H. You, S. Nam, and T.-H. Kim, PEG-imidazolium-incorporated polyimides as high-performance CO2-selective polymer membranes: The effects of PEG-imidazolium content, Sep. Purif. Technol., 179, 283-290 (2017).
  28. I. Hossain, S. Y. Nam, C. Rizzuto, G. Barbieri, E. Tocci, and T.-H. Kim, PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances, J. Membr. Sci., 574, 270-281 (2019).
  29. H. Y. Hwang, S. Y. Nam, H. C. Koh, S. Y. Ha, G. Barbieri, and E. Drioli, The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation, J. Ind. Eng. Chem, 18, 205-211 (2012).
  30. I. Kammakakam, H. W. Kim, S. Y. Nam, H. B. Park, and T.-H. Kim, Alkyl imidazolium-functionalized cardo-based poly (ether ketone) s as novel polymer membranes for O2/N2 and CO2/N2 separations, Polymer, 54, 3534-3541 (2013).
  31. I. Kammakakam, A. H. Rao, H. W. Yoon, S. Y. Nam, H. B. Park, and T.-H. Kim, An imidazolium-based ionene blended with crosslinked PEO as a novel polymer membrane for selective CO2 separation, Macromol. Res., 22, 907-916 (2014).
  32. I. Kammakakam, H. W. Yoon, S. Y. Nam, H. B. Park, and T.-H. Kim, Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation, J. Membr. Sci., 487, 90-98 (2015).
  33. V. Vijayakumar, J. H. Kim, and S. Y. Nam, Piperidinium functionalized poly (2, 6 dimethyl 1, 4 phenylene oxide) based polyionic liquid/ionic liquid (PIL/IL) composites for CO2 separation, J. Ind. Eng. Chem, 99, 81-89 (2021).
  34. Y. Y. Dai, Z. H. Niu, Y. Y. Wang, S. Y. Zhong, P. Mu, and J. Li, Recent advances and prospect of emerging microporous membranes for high-performance CO2 capture, Sep. Purif. Technol., 318, 123992 (2023).
  35. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008).
  36. V. T. Hoang and S. Kaliaguine, Predictive models for mixed-matrix membrane performance: A review, Chem. Rev., 113, 4980-5028 (2013).
  37. M. H. Huang, Z. G. Wang, and J. Jin, Two-dimensional microporous material-based mixed matrix membranes for gas separation, Chem. Asian J., 15, 2303-2315 (2020).
  38. Y. Y. Dai, Z. H. Niu, W. J. Luo, Y. Y. Wang, P. Mu, and J. Li, A review on the recent advances in composite membranes for CO2 capture processes, Sep. Purif. Technol., 307, 122752 (2023).
  39. Y. Zhang, S. Zhang, J. Gao, and T. S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci., 515, 230-237 (2016).
  40. A. Gugliuzza, A. Politano, and E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology, Curr. Opin. Chem. Eng., 16, 78-85 (2017).
  41. T. S. Yang, H. Lin, K. P. Loh, and B. H. Jia, Fundamental Transport Mechanisms and Advancements of Graphene Oxide Membranes for Molecular Separation, Chem. Mater., 31, 1829-1846 (2019).
  42. M. M. Chen, F. Soyekwo, Q. G. Zhang, C. Hu, A. M. Zhu, and Q. L. Liu, Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation, J. Ind. Eng. Chem, 63, 296-302 (2018).
  43. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis, Zeolite membranes - A review and comparison with MOFs, Chem. Soc. Rev., 44, 7128-7154 (2015).
  44. J. Jimmy, and B. Kandasubramanian, Mxene functionalized polymer composites: Synthesis and applications, Eur. Polym. J., 122, 109367 (2020).
  45. J. Yang, W. Z. Bao, P. Jaumaux, S. T. Zhang, C. Y. Wang, and G. X. Wang, MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors, Adv. Mater. Interfaces, 6, 1802004 (2019).
  46. H. L. Wang, S. F. He, X. D. Qin, C. E. Li, and T. Li, Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes, J. Am. Chem. Soc., 140, 17203-17210 (2018).
  47. J. H. Yan, Y. W. Sun, T. T. Ji, C. H. Zhang, L. L. Liu, and Y. Liu, Room-temperature synthesis of defect-engineered ZirconiumMOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source, J. Membr. Sci., 653, 120496 (2022).
  48. Q. Q. Hou, S. Zhou, Y. Y. Wei, J. Caro, and H. H. Wang, Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation, J. Am. Chem. Soc., 142, 9582-9586 (2020).
  49. B. H. Monjezi, K. Kutonova, M. Tsotsalas, S. Henke, and A. Knebel, Current trends in metal-organic and covalent organic framework membrane materials, Angew. Chem. Int. Ed., 60, 15153-15164 (2021).
  50. M. Shan, B. Seoane, E. Rozhko, A. Dikhtiarenko, G. Clet, F. Kapteijn, and J. Gascon, Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 Separation, Chem. Eur. J., 22, 14467-14470 (2016).
  51. P. Niu, L. L. Zhang, G. Liu, and H. M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22, 4763-4770 (2012).
  52. X. X. Guo, F. Z. Zhang, D. G. Evans, and X. Duan, Layered double hydroxide films: synthesis, properties and applications, Chem. Commun., 46, 5197-5210 (2010).
  53. Y. Zhang, M. Zhao, X. Li, Q. Xin, X. Ding, L. Zhao, H. Ye, L. Lin, H. Li, and Y. Zhang, Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure, J. Ind. Eng. Chem, 125, 200-210 (2023).
  54. A. R. Kamble, C. M. Patel, and Z. V. P. Murthy, A review on the recent advances in mixed matrix membranes for gas separation processes, Renew. Sustain. Energy Rev., 145, 111062 (2021).
  55. M. Asghari, S. Saadatmandi, and M. Afsari, Graphene oxide and its derivatives for gas separation membranes, ChemBioEng Rev., 8, 490-516 (2021).
  56. B. Li, H. M. Wen, Y. Yu, Y. Cui, W. Zhou, B. Chen, and G. Qian, Nanospace within metal-organic frameworks for gas storage and separation, Mater. Today Nano, 2, 21-49 (2018).
  57. K. Duan, J. Wang, Y. T. Zhang, and J. D. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, J. Membr. Sci., 572, 588-595 (2019).
  58. J. Shen, G. Z. Liu, Y. F. Ji, Q. Liu, L. Cheng, K. C. Guan, M. C. Zhang, G. P. Liu, J. Xiong, J. Yang, and W. Q. Jin, 2D MXene nanofilms with tunable gas transport channels, Adv. Funct. Mater., 28, 1801151 (2018).
  59. Y. Wang, G. Q. Tan, M. Y. Dang, S. H. Dong, Y. Liu, T. Liu, H. J. Ren, A. Xia, and L. Lv, Study on surface modification of g-C3N4 photocatalyst, J. Alloys Compd., 908, 164507 (2022).
  60. P. Lu, Y. Liu, T. T. Zhou, Q. Wang, and Y. S. Li, Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations, J. Membr. Sci., 567, 89-103 (2018).
  61. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, and R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature, 461, 246-249 (2009).
  62. Y. Peng, Y. S. Li, Y. J. Ban, and W. S. Yang, Two-dimensional metal-organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed., 56, 9757-9761 (2017).
  63. Y. Peng, Y. S. Li, Y. J. Ban, H. Jin, W. M. Jiao, X. L. Liu, and W. S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 346, 1356-1359 (2014).
  64. J. A. Foster, S. Henke, A. Schneemann, R. A. Fischer, and A. K. Cheetham, Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets, Chem. Commun., 52, 10474-10477 (2016).
  65. A. Gallego, C. Hermosa, O. Castillo, I. Berlanga, C. J. Gomez-Garcia, E. Mateo-Marti, J. I. Martinez, F. Flores, C. Gomez-Navarro, J. Gomez-Herrero, S. Delgado, and F. Zamora, Solvent-induced delamination of a multifunctional two dimensional coordination polymer, Adv. Mater., 25, 2141-2146 (2013).
  66. Y. J. Ding, Y. P. Chen, X. L. Zhang, L. Chen, Z. H. Dong, H. L. Jiang, H. X. Xu, and H. C. Zhou, Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent, J. Am. Chem. Soc., 139, 9136-9139 (2017).
  67. K. Varoon, X. Y. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C. Y. Sung, M. Cococcioni, L. F. Francis, A. V. McCormick, K. A. Mkhoyan, and M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science, 334, 72-75 (2011).
  68. S. Yang, W. X. Niu, A. L. Wang, Z. X. Fan, B. Chen, C. L. Tan, Q. P. Lu, and H. Zhang, Ultrathin Two-Dimensional organic-inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability, Angew. Chem. Int. Ed., 56, 4252-4255 (2017).
  69. S. Alam, M. A. Chowdhury, A. Shahid, R. Alam, and A. Rahim, Synthesis of emerging two-dimensional (2D) materials-Advances, challenges and prospects, Flatchem, 30, 100305 (2021).
  70. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. L. I. Xamena, and J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater., 14, 48-55 (2015).
  71. L. Ding, Y. Y. Wei, L. B. Li, T. Zhang, H. H. Wang, J. Xue, L. X. Ding, S. Q. Wang, J. Caro, and Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun., 9, 155 (2018).
  72. M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb Carbon: A review of graphene, Chem. Rev., 110, 132-145 (2010).
  73. K. H. Thebo, X. T. Qian, Q. Zhang, L. Chen, H. M. Cheng, and W. C. Ren, Highly stable graphene-oxide-based membranes with superior permeability, Nat. Commun., 9, 1486 (2018).
  74. K. H. Thebo, X. T. Qian, Q. W. Wei, Q. Zhang, H. M. Cheng, and W. C. Ren, Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation, J. Mater. Sci. Technol., 34, 1481-1486 (2018).
  75. J. Shen, G. P. Liu, K. Huang, W. Q. Jin, K. R. Lee, and N. P. Xu, Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture, Angew. Chem. Int. Ed., 54, 578-582 (2015).
  76. L. Huang, M. Zhang, C. Li, and G. Q. Shi, Graphene-based membranes for molecular separation, J. Phys. Chem. Lett., 6, 2806-2815 (2015).
  77. G. P. Liu, W. Q. Jin, and N. P. Xu, Graphene-based membranes, Chem. Soc. Rev., 44, 5016-5030 (2015).
  78. H. Li, Z. N. Song, X. J. Zhang, Y. Huang, S. G. Li, Y. T. Mao, H. J. Ploehn, Y. Bao, and M. Yu, Ultrathin, Molecular-sieving graphene oxide membranes for selective hydrogen separation, Science, 342, 95-98 (2013).
  79. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 448, 457-460 (2007).
  80. S. S. Chen, L. Brown, M. Levendorf, W. W. Cai, S. Y. Ju, J. Edgeworth, X. S. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Y. Kang, J. Park, and R. S. Ruoff, Oxidation resistance of graphene-coated Cu and Cu/Ni alloy, ACS Nano, 5, 1321-1327 (2011).
  81. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008).
  82. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 10, 424-428 (2011).
  83. H. Huang, W. Chen, S. Chen, and A. T. S. Wee, Bottom-up growth of epitaxial graphene on 6H-SiC(0001), ACS Nano, 2, 2513-2518 (2008).
  84. J. Lee, and N. R. Aluru, Water-solubility-driven separation of gases using graphene membrane, J. Membr. Sci., 428, 546-553 (2013).
  85. S. P. Koenig, L. D. Wang, J. Pellegrino, and J. S. Bunch, Selective molecular sieving through porous graphene, Nat. Nanotechnol., 7, 728-732 (2012).
  86. G. W. He, S. Q. Huang, L. F. Villalobos, J. Zhao, M. Mensi, E. Oveisi, M. Rezaei, and K. V. Agrawal, High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target, Energy Environ. Sci., 12, 3305-3312 (2019).
  87. Z. Q. Tian, S. M. Mahurin, S. Dai, and D. E. Jiang, Ion-gated gas separation through porous graphene, Nano Lett., 17, 1802-1807 (2017).
  88. W. Guo, S. M. Mahurin, R. R. Unocic, H. M. Luo, and S. Dai, Broadening the gas separation utility of monolayer nanoporous graphene membranes by an ionic liquid gating, Nano Lett., 20, 7995-8000 (2020).
  89. T. Wang, L. Zhao, J. N. Shen, L. G. Wu, and B. Van der Bruggen, Enhanced performance of polyurethane hybrid membranes for CO2 separation by incorporating graphene oxide: the relationship between membrane performance and morphology of graphene oxide, Environ. Sci. Technol., 49, 8004-8011 (2015).
  90. X. Q. Li, Y. D. Cheng, H. Y. Zhang, S. F. Wang, Z. Y. Jiang, R. L. Guo, and H. Wu, Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes, ACS Appl. Mater. Interfaces, 7, 5528-5537 (2015).
  91. S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X. Cao, M. D. Guiver, and Z. Jiang, A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture, Energy Environ. Sci., 9, 3107-3112 (2016).
  92. H. Li, X. X. Ding, Y. T. Zhang, and J. D. Liu, Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation, J. Membr. Sci., 543, 58-68 (2017).
  93. D. C. Wang, D. D. Yao, Y. D. Wang, F. Wang, Y. Y. Xin, S. Song, Z. L. Zhang, F. F. Su, and Y. P. Zheng, Carbon nanotubes and graphene oxide-based solvent-free hybrid nanofluids functionalized mixed-matrix membranes for efficient CO2/N2 separation, Sep. Purif. Technol., 221, 421-432 (2019).
  94. T. C. Huang, Y. C. Liu, G. S. Lin, C. H. Lin, W. R. Liu, and K. L. Tung, Fabrication of pebax-1657-based mixed-matrix membranes incorporating N-doped few-layer graphene for carbon dioxide capture enhancement, J. Membr. Sci., 602, 117946 (2020).
  95. E. Yang, K. Goh, C. Y. Chuah, R. Wang, and T. H. Bae, Asymmetric mixed-matrix membranes incorporated with nitrogen-doped graphene nanosheets for highly selective gas separation, J. Membr. Sci., 615, 118293 (2020).
  96. J. P. Hou, X. Q. Li, R. L. Guo, J. S. Zhang, and Z. M. Wang, Mixed matrix membranes with fast and selective transport pathways for efficient CO2 separation, Nanotechnology, 29, 125706 (2018).
  97. K. J. Berean, J. Z. Ou, M. Nour, M. R. Field, M. M. Y. A. Alsaif, Y. C. Wang, R. Ramanathan, V. Bansal, S. Kentish, C. M. Doherty, A. J. Hill, C. McSweeney, R. B. Kaner, and K. Kalantar-zadeh, Enhanced gas permeation through graphene nanocomposites, J. Phys. Chem. C, 119, 13700-13712 (2015).
  98. F. U. Nigiz, Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved separation of CO2, Polym. Bull., 77, 2405-2422 (2020).
  99. R. Rea, S. Ligi, M. Christian, V. Morandi, M. G. Baschetti, and M. G. De Angelis, Permeability and selectivity of PPO/graphene composites as mixed matrix membranes for CO2 capture and gas separation, Polymers-Basel, 10, 129 (2018).
  100. F. Pazani, and A. Aroujalian, Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers, Polym. Test., 81, 106264 (2020).
  101. J. M. Luque-Alled, A. W. Ameen, M. Alberto, M. Tamaddondar, A. B. Foster, P. M. Budd, A. Vijayaraghavan, and P. Gorgojo, Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives, J. Membr. Sci., 623, 118902 (2021).
  102. T. Hou, L. Shu, K. C. Guo, X. F. Zhang, S. Zhou, M. He, and J. F. Yao, Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation, Cellulose, 27, 3277-3286 (2020).
  103. D. D. Peng, S. F. Wang, Z. Z. Tian, X. Y. Wu, Y. Z. Wu, H. Wu, Q. P. Xin, J. F. Chen, X. Z. Cao, and Z. Y. Jiang, Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation, J. Membr. Sci., 522, 351-362 (2017).
  104. J. Shen, M. C. Zhang, G. P. Liu, K. C. Guan, and W. Q. Jin, Size Effects of graphene oxide on mixed matrix membranes for CO2 separation, AlChE J., 62, 2843-2852 (2016).
  105. E. A. Feijani, A. Tavassoli, H. Mahdavi, and H. Molavi, Effective gas separation through graphene oxide containing mixed matrix membranes, J. Appl. Polym. Sci., 135, 46271 (2018).
  106. S. Quan, S. W. Li, Y. C. Xiao, and L. Shao, CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture, Int. J. Greenhouse Gas Control., 56, 22-29 (2017).
  107. R. A. Roslan, W. J. Lau, G. S. Lai, A. K. Zulhairun, Y. F. Yeong, A. F. Ismail, and T. Matsuura, Impacts of multilayer hybrid coating on PSF hollow fiber membrane for enhanced gas separation, Membranes, 10, 335 (2020).
  108. F. Shi, J. X. Sun, J. T. Wang, M. Liu, Z. K. Yan, B. Zhu, Y. F. Li, and X. Z. Cao, MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation, J. Membr. Sci., 620, 118850 (2021).
  109. M. M. Lichaei, F. Pazani, A. Aroujalian, and D. Rodrigue, Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on PEBAX and graphene oxide, Process Saf. Environ. Prot., 163, 36-47 (2022).
  110. S. A. Mohammed, A. M. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W. J. Lau, N. Yusof, W. N. W. Salleh, and A. F. Ismail, CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane, Sep. Purif. Technol., 223, 142-153 (2019).
  111. B. S. Ge, T. Wang, H. X. Sun, W. Gao, and H. R. Zhao, Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation, Polym. Adv. Technol., 29, 1334-1343 (2018).
  112. R. R. He, S. Z. Cong, J. Wang, J. D. Liu, and Y. T. Zhang, Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture, ACS Appl. Mater. Interfaces, 11, 4338-4344 (2019).
  113. Y. Dai, X. H. Ruan, Z. J. Yan, K. Yang, M. Yu, H. Li, W. Zhao, and G. H. He, Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture, Sep. Purif. Technol., 166, 171-180 (2016).
  114. Q. P. Xin, F. X. Ma, L. Zhang, S. F. Wang, Y. F. Li, H. Ye, X. L. Ding, L. G. Lin, Y. Z. Zhang, and X. Z. Cao, Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation, J. Membr. Sci., 586, 23-33 (2019).
  115. M. Alberto, R. Bhavsar, J. M. Luque-Alled, A. Vijayaraghavan, P. M. Budd, and P. Gorgojo, Impeded physical aging in PIM-1 membranes containing graphene-like fillers, J. Membr. Sci., 563, 513-520 (2018).
  116. J. Y. Chen, K. Shen, and Y. W. Li, Greening the processes of metal-organic framework synthesis and their use in sustainable catalysis, ChemSusChem, 10, 3165-3187 (2017).
  117. M. Zhang, L. Ma, L. L. Wan, Y. W. Sun, and Y. Liu, Insights into the use of metal-organic framework as high-performance anticorrosion coatings, ACS Appl. Mater. Interfaces, 10, 2259-2263 (2018).
  118. Y. R. Lee, J. Kim, and W. S. Ahn, Synthesis of metal-organic frameworks: A mini review, Korean J. Chem. Eng., 30, 1667-1680 (2013).
  119. V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, Metal-organic frameworks: structure, properties, methods of synthesis and characterization, Russ. Chem. Rev., 85, 280-307 (2016).
  120. M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and M. Khatami, A review on metal-organic frameworks: Synthesis and applications, Trends Anal. Chem., 118, 401-425 (2019).
  121. V. R. Remya, and M. Kurian, Synthesis and catalytic applications of metal-organic frameworks: a review on recent literature, Int. Nano Lett., 9, 17-29 (2019).
  122. B. S. Ge, Y. Y. Xu, H. R. Zhao, H. X. Sun, Y. L. Guo, and W. G. Wang, High performance gas separation mixed matrix membrane fabricated by incorporation of functionalized submicrometer-sized metal-organic framework, Materials, 11, 1421 (2018).
  123. S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, and D. Quemener, MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties, J. Membr. Sci., 492, 21-31 (2015).
  124. G. X. Dong, H. Y. Li, and V. K. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A, 1, 4610-4630 (2013).
  125. D. Bastani, N. Esmaeili, and M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem., 19, 375-393 (2013).
  126. Z. X. Zhao, X. L. Ma, A. Kasik, Z. Li, and Y. S. Lin, Gas separation properties of metal organic framework (MOF-5) membranes, Ind. Eng. Chem. Res., 52, 1102-1108 (2013).
  127. H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li, and H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today, 21, 108-121 (2018).
  128. M. M. H. S. Buddin, and A. L. Ahmad, A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation, J. CO2 Util., 51, 101616 (2021).
  129. N. S. Bobbitt, A. S. Rosen, and R. Q. Snurr, Topological effects on separation of alkane isomers in metal-organic frameworks, Fluid Phase Equilib., 519, 112642 (2020).
  130. Q. P. Xin, L. Gao, F. X. Ma, S. F. Wang, G. Y. Xuan, X. H. Ma, M. T. Wei, L. Zhang, and Y. Z. Zhang, Preparation of mixed matrix membrane with high efficiency SO2 separation performance by photosensitive modification and enhanced adsorption of metal-organic framework, J. Mater. Sci., 58, 6185-6202 (2023).
  131. X. Gong, Y. J. Wang, and T. R. Kuang, ZIF-8-based membranes for carbon dioxide capture and separation, ACS Sustain. Chem. Eng., 5, 11204-11214 (2017).
  132. R. Castro-Munoz, O. de la Iglesia, V. Fila, C. Tellez, and J. Coronas, Pervaporation-assisted esterification reactions by means of mixed matrix membranes, Ind. Eng. Chem. Res., 57, 15998-16011 (2018).
  133. S. H. Yuan, A. P. Isfahani, T. Yamamoto, A. Muchtar, C. Y. Wu, G. J. Huang, Y. C. You, E. Sivaniah, B. K. Chang, and B. Ghalei, Nanosized core-shell zeolitic imidazolate frameworks-based membranes for gas separation, Small Methods, 4, 2000021 (2020).
  134. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A., 103, 10186-10191 (2006).
  135. V. Nafisi, and M. B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014).
  136. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali, and T. Matsuura, Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation, RSC Adv., 5, 30206-30215 (2015).
  137. H. B. T. Jeazet, S. Sorribas, J. M. Roman-Marin, B. Zornoza, C. Tellez, J. Coronas, and C. Janiak, Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8, Eur. J. Inorg. Chem., 2016, 4363-4367 (2016).
  138. J. A. Thompson, J. T. Vaughn, N. A. Brunelli, W. J. Koros, C. W. Jones, and S. Nair, Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas, Micropor. Mesopor. Mater., 192, 43-51 (2014).
  139. W. S. Chi, S. Hwang, S. J. Lee, S. Park, Y. S. Bae, D. Y. Ryu, J. H. Kim, and J. Kim, Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture, J. Membr. Sci., 495, 479-488 (2015).
  140. Y. J. Ban, Z. J. Li, Y. S. Li, Y. Peng, H. Jin, W. M. Jiao, A. Guo, P. Wang, Q. Y. Yang, C. L. Zhong, and W. S. Yang, Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture, Angew. Chem. Int. Ed., 54, 15483-15487 (2015).
  141. Y. J. Ban, Y. S. Li, Y. Peng, H. Jin, W. M. Jiao, X. L. Liu, and W. S. Yang, Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties, Chem. Eur. J., 20, 11402-11409 (2014).
  142. T. H. Bae, J. S. Lee, W. L. Qiu, W. J. Koros, C. W. Jones, and S. Nair, A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals, Angew. Chem. Int. Ed., 49, 9863-9866 (2010).
  143. S. Japip, Y. C. Xiao, and T. S. Chung, Particle-size effects on gas transport properties of 6FDA-durene/ZIF-71 mixed matrix membranes, Ind. Eng. Chem. Res., 55, 9507-9517 (2016).
  144. M. Yahia, Q. N. P. Le, N. Ismail, M. Essalhi, O. Sundman, A. Rahimpour, M. M. Dal-Cin, and N. Tavajohi, Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation, Micropor. Mesopor. Mater., 312, 110761 (2021).
  145. N. H. Suhaimi, Y. F. Yeong, C. W. M. Ch'ng, and N. Jusoh, Tailoring CO2/CH4 Separation performance of mixed matrix membranes by using ZIF-8 particles functionalized with different amine groups, Polymers-Basel, 11, 2042 (2019).
  146. Y. H. Zhang, Y. P. Tong, X. Y. Li, S. J. Guo, H. L. Zhang, X. Chen, K. Cai, L. H. Cheng, and W. W. He, Pebax mixed-matrix membrane with highly dispersed ZIF-8@CNTs to enhance CO2/N2 separation, ACS Omega, 6, 18559-18568 (2021).
  147. J. W. Yuan, H. P. Zhu, J. J. Sun, Y. Y. Mao, G. P. Liu, and W. Q. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture, ACS Appl. Mater. Interfaces, 9, 38575-38583 (2017).
  148. O. G. Nik, X. Y. Chen, and S. Kaliaguine, Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci., 413, 48-61 (2012).
  149. X. Y. Chen, H. Vinh-Thang, D. Rodrigue, and S. Kaliaguine, Amine-functionalized MIL-53 metal-organic framework in polyimide mixed matrix membranes for CO2/CH4 Separation, Ind. Eng. Chem. Res., 51, 6895-6906 (2012).
  150. D. T. C. Nguyen, H. T. N. Le, T. S. Do, V. T. Pham, D. L. Tran, V. T. T. Ho, T. V. Tran, D. C. Nguyen, T. D. Nguyen, L. G. Bach, H. K. P. Ha, and V. T. Doan, Metal-organic framework MIL-53(Fe) as an adsorbent for ibuprofen drug removal from aqueous solutions: response surface modeling and optimization, J. Chem., 2019, 5602957 (2019).
  151. J. O. Hsieh, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, MIL-53 frameworks in mixed-matrix membranes, Micropor. Mesopor. Mater., 196, 165-174 (2014).
  152. F. Dorosti, M. Omidkhah, and R. Abedini, Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chem. Eng. Res. Des., 92, 2439-2448 (2014).
  153. N. V. Maksimchuk, O. V. Zalomaeva, I. Y. Skobelev, K. A. Kovalenko, V. P. Fedin, and O. A. Kholdeeva, Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts, Proc. R. Soc. A, 468, 2017-2034 (2012).
  154. R. Abedini, M. Omidkhah, and F. Dorosti, Highly permeable poly(4-methyl-1-pentyne)/NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation, RSC Adv., 4, 36522-36537 (2014).
  155. M. Naseri, S. F. Mousavi, T. Mohammadi, and O. Bakhtiari, Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes, J. Ind. Eng. Chem, 29, 249-256 (2015).
  156. A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. Le Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, and J. Gascon, Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance, Adv. Funct. Mater., 26, 3154-3163 (2016).
  157. T. Rodenas, M. van Dalen, E. Garcia-Perez, P. Serra-Crespo, B. Zornoza, F. Kapteijn, and J. Gascon, Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI, Adv. Funct. Mater., 24, 249-256 (2014).
  158. E. A. Feijani, H. Mandavi, and A. Tavasoli, Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications, Chem. Eng. Res. Des., 96, 87-102 (2015).
  159. X. Y. Dong, Q. Liu, and A. S. Huang, Highly permselective MIL-68(Al)/matrimid mixed matrix membranes for CO2/CH4 separation, J. Appl. Polym. Sci., 133, 43485 (2016).
  160. C. F. Song, R. Li, Z. C. Fan, Q. L. Liu, B. Zhang, and Y. Kitamura, CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation, Sep. Purif. Technol., 238, 116500 (2020).
  161. M. W. Anjum, B. Bueken, D. De Vos, and I. F. J. Vankelecom, MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N2, J. Membr. Sci., 502, 21-28 (2016).
  162. K. Pirzadeh, K. Esfandiari, A. A. Ghoreyshi, and M. Rahimnejad, CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study, Korean J. Chem. Eng., 37, 513-524 (2020).
  163. G. E. Cmarik, M. Kim, S. M. Cohen, and K. S. Walton, Tuning the adsorption properties of UiO-66 via ligand functionalization, Langmuir, 28, 15606-15613 (2012).
  164. H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their essential effects on gas adsorption, J. Am. Chem. Soc., 135, 10525-10532 (2013).
  165. S. Biswas, and P. Van der Voort, A General strategy for the synthesis of functionalised UiO-66 Frameworks: Characterisation, stability and CO2 adsorption properties, Eur. J. Inorg. Chem., 2013, 2154-2160 (2013).
  166. R. Rong, Y. W. Sun, T. T. Ji, and Y. Liu, Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via solvothermal, J. Membr. Sci., 610, 118275 (2020).
  167. J. Shen, G. P. Liu, K. Huang, Q. Q. Li, K. C. Guan, Y. K. Li, and W. Q. Jin, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, J. Membr. Sci., 513, 155-165 (2016).
  168. Q. H. Qian, A. X. Wu, W. S. Chi, P. A. Asinger, S. Lin, A. Hypsher, and Z. P. Smith, Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility, ACS Appl. Mater. Interfaces, 11, 31257-31269 (2019).
  169. Z. G. Wang, Y. Y. Tian, W. X. Fang, B. B. Shrestha, M. H. Huang, and J. Jin, Constructing strong interfacial interactions under mild conditions in MOF-incorporated mixed matrix membranes for gas separation, ACS Appl. Mater. Interfaces, 13, 3166-3174 (2021).
  170. C. Y. Chuah, J. Lee, J. H. Song, and T. H. Bae, CO2/N2 Separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities, Membranes, 10, 154 (2020).
  171. M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, and I. F. J. Vankelecom, Modulated UiO-66-based mixed-matrix membranes for CO2 separation, ACS Appl. Mater. Interfaces, 7, 25193-25201 (2015).
  172. C. Y. Chuah, S. A. S. C. Samarasinghe, W. Li, K. Goh, and T. H. Bae, Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation, Membranes, 10, 74 (2020).
  173. C. Casado-Coterillo, A. Fernandez-Barquin, B. Zornoza, C. Tellez, J. Coronas, and A. Irabien, Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation, RSC Adv., 5, 102350-102361 (2015).
  174. C. Y. Chuah, W. Li, S. A. S. C. Samarasinghe, G. S. M. D. P. Sethunga, and T. H. Bae, Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals, Micropor. Mesopor. Mater., 290, 109680 (2019).
  175. X. Y. Wang, Z. Zhang, W. Q. Huang, X. F. Li, and B. Y. Yan, Preparation of highly water stable HKUST-1@Pyr composites for excellent CO2 capture capability and efficient separation of CO2/N2, Inorg. Chem. Commun., 156, 111252 (2023).
  176. M. Arjmandi, and M. Pakizeh, Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment, J. Ind. Eng. Chem., 20, 3857-3868 (2014).
  177. E. V. Perez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, J. Membr. Sci., 328, 165-173 (2009).
  178. W. B. Chen, Z. G. Zhang, L. Hou, C. C. Yang, H. C. Shen, K. Yang, and Z. Wang, Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance, Sep. Purif. Technol., 250, 117198 (2020).
  179. N. Azizi, and M. R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Pet. Sci. Technol., 36, 993-1000 (2018).
  180. J. Gao, H. Z. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. S. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Micropor. Mesopor. Mater., 297, 110030 (2020).
  181. Y. N. Wang, Y. X. Ren, H. Wu, X. Y. Wu, H. Yang, L. X. Yang, X. Y. Wang, Y. Z. Wu, Y. T. Liu, and Z. Y. Jiang, Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading, J. Membr. Sci., 602, 117970 (2020).
  182. S. Meshkat, S. Kaliaguine, and D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 235, 116150 (2020).
  183. S. Zhao, X. C. Cao, Z. J. Ma, Z. Wang, Z. H. Qiao, J. X. Wang, and S. C. Wang, Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal-organic frameworks, Ind. Eng. Chem. Res., 54, 5139-5148 (2015).
  184. M. Barooah, and B. Mandal, Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane, J. Membr. Sci., 572, 198-209 (2019).
  185. M. Etxeberria-Benavides, T. Johnson, S. Cao, B. Zornoza, J. Coronas, J. Sanchez-Lainez, A. Sabetghadam, X. L. Liu, E. Andres-Garcia, F. Kapteijn, J. Gascon, and O. David, PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure, Sep. Purif. Technol., 237, 116347 (2020).
  186. Z. D. Dai, V. Loining, J. Deng, L. Ansaloni, and L. Y. Deng, Poly(1-trimethylsilyl-1-propyne)-based hybrid membranes: effects of various nanofillers and feed gas humidity on CO2 permeation, Membranes, 8, 76 (2018).
  187. J. Deng, Z. D. Dai, J. W. Hou, and L. Y. Deng, Morphologically tunable MOF nanosheets in mixed matrix membranes for CO2 separation, Chem. Mater., 32, 4174-4184 (2020).
  188. X. Y. Wu, W. Liu, H. Wu, X. Zong, L. X. Yang, Y. Z. Wu, Y. X. Ren, C. Y. Shi, S. F. Wang, and Z. Y. Jiang, Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance, J. Membr. Sci., 548, 309-318 (2018).
  189. A. Ehsani, and M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng., 66, 414-423 (2016).
  190. M. S. Boroglu, and A. B. Yumru, Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation, Sep. Purif. Technol., 173, 269-279 (2017).
  191. Q. N. Zhang, S. J. Luo, J. R. Weidman, and R. L. Guo, Preparation and gas separation performance of mixed-matrix membranes based on triptycene-containing polyimide and zeolite imidazole framework (ZIF-90), Polymer, 131, 209-216 (2017).
  192. Y. X. Sun, C. X. Geng, Z. Q. Zhang, Z. H. Qiao, and C. L. Zhong, Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation, J. Membr. Sci., 661, 120928 (2022).
  193. H. Rajati, A. H. Navarchian, and S. Tangestaninejad, Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation, Chem. Eng. Sci., 185, 92-104 (2018).
  194. I. C. Ferreira, T. J. Ferreira, A. D. S. Barbosa, B. de Castro, R. P. P. L. Ribeiro, J. P. B. Mota, V. D. Alves, L. Cunha-Silva, I. A. A. C. Esteves, and L. A. Neves, Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 276, 119303 (2021).
  195. S. Meshkat, S. Kaliaguine, and D. Rodrigue, Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation, Sep. Purif. Technol., 200, 177-190 (2018).
  196. M. Z. Ahmad, M. Navarro, M. Lhotka, B. Zornoza, C. Tellez, W. M. de Vos, N. E. Benes, N. M. Konnertz, T. Visser, R. Semino, G. Maurin, V. Fila, and J. Coronas, Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives, J. Membr. Sci., 558, 64-77 (2018).
  197. Y. Z. Jiang, C. Y. Liu, J. Caro, and A. S. Huang, A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance, Micropor. Mesopor. Mater., 274, 203-211 (2019).
  198. Y. S. Zhang, H. G. Jia, Q. J. Wang, W. Q. Ma, G. X. Yang, S. P. Xu, S. B. Li, G. M. Su, Y. Q. Qu, M. Y. Zhang, and P. F. Jiang, Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation, Membranes, 12, 34 (2022).
  199. R. Thur, N. Van Velthoven, S. Slootmaekers, J. Didden, R. Verbeke, S. Smolders, M. Dickmann, W. Egger, D. De Vos, and I. F. J. Vankelecom, Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation, J. Membr. Sci., 576, 78-87 (2019).
  200. R. J. Ling, L. Ge, H. Diao, V. Rudolph, and Z. H. Zhu, Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation, ACS Appl. Mater. Interfaces, 8, 32041-32049 (2016).
  201. B. Zornoza, B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, Combination of MOFs and zeolites for mixed-matrix membranes, ChemPhysChem, 12, 2781-2785 (2011).
  202. N. Liu, J. Cheng, W. Hou, C. Yang, X. Yang, and J. H. Zhou, Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes, Sep. Purif. Technol., 282, 120007 (2022).
  203. D. C. Wang, Y. P. Ying, Y. P. Zheng, Y. C. Pu, Z. Q. Yang, and D. Zhao, Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation, J. Membr. Sci. Lett., 2, 100017 (2022).
  204. C. Wang, J. Wu, P. F. Cheng, L. P. Xu, and S. Zhang, Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture, J. Membr. Sci., 685, 121950 (2023).
  205. X. Feng, Z. K. Qin, Q. X. Lai, Z. Y. Zhang, Z. W. Shao, W. L. Tang, W. J. Wu, Z. D. Dai, and C. Liu, Mixed-matrix membranes based on novel hydroxamate metal-organic frameworks with two-dimensional layers for CO2/N2 separation, Sep. Purif. Technol., 305, 122476 (2023).
  206. S. Majumdar, B. Tokay, V. Martin-Gil, J. Campbell, R. CastroMunoz, M. Z. Ahmad, and V. Fila, Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 238, 116411 (2020).
  207. E. Roh, I. Subiyanto, W. Choi, Y. C. Park, C. H. Cho, and H. Kim, CO2/N2 and O2/N2 separation using mixed-matrix membranes with MOF-74 nanocrystals synthesized via microwave reactions, Bull. Korean Chem. Soc., 42, 459-462 (2021).
  208. M. Y. Fang, C. Montoro, and M. Semsarilar, Metal and covalent organic frameworks for membrane applications, Membranes, 10, 107 (2020).
  209. T. Rasheed, S. Khan, T. Ahmad, and N. Ullah, Covalent organic frameworks-based membranes as promising modalities from preparation to separation applications: An overview, Chem. Rec., 22, e202200062 (2022).
  210. M. G. Mohamed, A. F. M. EL-Mahdy, M. G. Kotp, and S. W. Kuo, Advances in porous organic polymers: syntheses, structures, and diverse applications, Mater. Adv., 3, 707-733 (2022).
  211. Y. T. Liu, H. Wu, S. Q. Wu, S. Q. Song, Z. Y. Guo, Y. X. Ren, R. Zhao, L. X. Yang, Y. Z. Wu, and Z. Y. Jiang, Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation, J. Membr. Sci., 618, 118693 (2021).
  212. X. Zhu, C. C. Tian, C. L. Do-Thanh, and S. Dai, Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation, ChemSusChem, 10, 3304-3316 (2017).
  213. C. C. Zou, Q. Q. Li, Y. Y. Hua, B. H. Zhou, J. G. Duan, and W. Q. Jin, Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal, ACS Appl. Mater. Interfaces., 9, 29093-29100 (2017).
  214. Z. X. Kang, Y. W. Peng, Y. H. Qian, D. Q. Yuan, M. A. Addicoat, T. Heine, Z. G. Hu, L. Tee, Z. G. Guo, and D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater., 28, 1277-1285 (2016).
  215. B. P. Biswal, H. D. Chaudhari, R. Banerjee, and U. K. Kharul, Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation, Chem. Eur. J., 22, 4695-4699 (2016).
  216. R. L. Thankamony, X. Li, S. K. Das, M. M. Ostwal, and Z. P. Lai, Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations, J. Membr. Sci., 591, 117348 (2019).
  217. S. Bugel, M. Hahnel, T. Kunde, N. D. Amadeu, Y. Y. Sun, A. Spiess, T. H. Y. Beglau, B. M. Schmidt, and C. Janiak, Synthesis and characterization of a crystalline imine-based covalent organic framework with triazine node and biphenyl linker and its fluorinated derivate for CO2/CH4 separation, Materials, 15, 2807 (2022).
  218. G. Dai, Q. Zhang, S. Xiong, L. Deng, Z. Gao, A. Chen, X. Li, C. Pan, J. Tang, and G. Yu, Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation, J. Membr. Sci., 676, 121561 (2023).
  219. G. M. Jaid, A. A. Abdulrazak, H. Meskher, S. Al-Saadi, and Q. F. Alsalhy, Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) in mixed matrix membranes, Mater. Today Sustain., 25, 100672 (2024).
  220. Y. Q. Yang, K. Goh, P. Weerachanchai, and T. H. Bae, 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging, J. Membr. Sci., 574, 235-242 (2019).
  221. J. Y. Liu, M. Q. Liu, and J. J. Lu, Fabrication of polyimide and covalent organic frameworks mixed matrix membranes by in situ polymerization for preliminary exploration of CO2/CH4 separation, High Perform. Polym., 31, 671-678 (2019).
  222. X. Y. Wu, Z. Z. Tian, S. F. Wang, D. D. Peng, L. X. Yang, Y. Z. Wu, Q. P. Xin, H. Wu, and Z. Y. Jiang, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation, J. Membr. Sci., 528, 273-283 (2017).
  223. Y. D. Cheng, L. Z. Zhai, Y. P. Ying, Y. X. Wang, G. L. Liu, J. Q. Dong, D. Z. L. Ng, S. A. Khan, and D. Zhao, Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers, J. Mater. Chem. A, 7, 4549-4560 (2019).
  224. Y. D. Cheng, Y. P. Ying, L. Z. Zhai, G. L. Liu, J. Q. Dong, Y. X. Wang, M. P. Christopher, S. C. Long, Y. X. Wang, and D. Zhao, Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation, J. Membr. Sci., 573, 97-106 (2019).
  225. R. Zhao, H. Wu, L. X. Yang, Y. X. Ren, Y. T. Liu, Z. H. Qu, Y. Z. Wu, L. Cao, Z. Chen, and Z. Y. Jiang, Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading, J. Membr. Sci., 600, 117841 (2020).
  226. X. C. Cao, Z. Wang, Z. H. Qao, S. Zhao, and J. X. Wang, Penetrated COF channels: Amino environment and suitable size for CO2 preferential adsorption and transport in mixed matrix membranes, ACS Appl. Mater. Interfaces, 11, 5306-5315 (2019).
  227. H. F. Jiang, Z. Y. Guo, H. J. Wang, X. Liu, Y. X. Ren, T. Huang, J. D. Xue, H. Wu, J. F. Zhang, Y. Yin, Z. Y. Jiang, and M. D. Guiver, Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading, J. Membr. Sci., 640, 119803 (2021).
  228. M. D. Wang, K. D. Quan, X. H. Zheng, Y. Cao, X. Y. Cui, M. Xue, and F. S. Pan, Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation, Sep. Purif. Technol., 237, 116457 (2020).
  229. X. Q. Chang, H. Y. Guo, Q. S. Chang, Z. H. Tian, Y. W. Zhang, D. Y. Li, J. Wang, and Y. T. Zhang, Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation, J. Membr. Sci., 686, 122017 (2023).
  230. Y. T. Liu, L. Y. Chen, L. F. Yang, T. H. Lan, H. Wang, C. H. Hu, X. Han, Q. X. Liu, J. F. Chen, Z. M. Feng, X. L. Cui, Q. R. Fang, H. L. Wang, L. B. Li, Y. W. Li, H. B. Xing, S. H. Yang, D. Zhao, and J. P. Li, Porous framework materials for energy & environment relevant applications: A systematic review, Green Energy Environ., 9, 217-310 (2024).
  231. Y. Zhang, M. F. Tian, Z. Majeed, Y. X. Xie, K. L. Zheng, Z. D. Luo, C. Y. Li, and C. J. Zhao, Application of hydrogen-bonded organic frameworks in environmental remediation: Recent advances and future trends, Separations, 10, 196 (2023).
  232. R. B. Lin, and B. L. Chen, Hydrogen-bonded organic frameworks: Chemistry and functions, Chem, 8, 2114-2135 (2022).
  233. I. Hisaki, Hydrogen-bonded porous frameworks constructed by rigid π-conjugated molecules with carboxy groups, J. Incl. Phenom. Macrocycl. Chem., 96, 215-231 (2020).
  234. Y. H. Wang, Y. X. Ren, Y. Cao, X. Liang, G. W. He, H. Z. Ma, H. L. Dong, X. Fang, F. S. Pan, and Z. Y. Jiang, Engineering HOF-based mixed-matrix membranes for efficient CO2 separation, Nano-Micro Lett., 15, 50 (2023).
  235. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248-4253 (2011).
  236. I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water puri fication: Progress, challenges and prospects, Chem. Eng. J., 388, 124340 (2020).
  237. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502-1505 (2013).
  238. L. Ding, Y. Y. Wei, Y. J. Wang, H. B. Chen, J. Caro, and H. H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks, Stacks, Angew. Chem. Int. Ed., 56, 1825-1829 (2017).
  239. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137-1140 (2016).
  240. W. J. Luo, Z. H. Niu, P. Mu, and J. Li, Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2, Macromolecules, 55, 9851-9859 (2022).
  241. D. Magne, V. Mauchamp, S. Celerier, P. Chartier, and T. Cabioc'h, Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups, Phys. Chem. Chem. Phys., 18, 30946-30953 (2016).
  242. A. Lipatov, H. D. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers, Sci. Adv., 4, eaat0491 (2018).
  243. R. Castro-Munoz, MXene: A two-dimensional material in selective water separation via pervaporation, Arab. J. Chem., 15, 103524 (2022).
  244. A. A. Shamsabadi, A. P. Isfahani, S. K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah, and M. Soroush, Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets, ACS Appl. Mater. Interfaces, 12, 3984-3992 (2020).
  245. W. Guan, X. Yang, C. Dong, X. Yan, W. Zheng, Y. Xi, X. Ruan, Y. Dai, and G. He, Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes, J. Appl. Polym. Sci., 138, 49895 (2021).
  246. G. Z. Liu, L. Cheng, G. N. Chen, F. Liang, G. P. Liu, and W. Q. Jin, Pebax-based membrane filled with two-dimensional MXene nanosheets for efficient CO2 capture, Chem. Asian J., 15, 2364-2370 (2020).
  247. C. Regmi, J. Azadmanjiri, V. Mishra, Z. Sofer, S. Ashtiani, and K. Friess, Cellulose triacetate-based mixed-matrix membranes with mxene 2D filler-CO2/CH4 separation performance and comparison with TiO2-based 1D and 0D fillers, Membranes, 12, 917 (2022).
  248. H. Q. Lin, K. Gong, P. Hykys, D. K. Chen, W. Ying, Z. Sofer, Y. G. Yan, Z. Li, and X. S. Peng, Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation, Chem. Eng. J., 405, 126961 (2021).
  249. Y. M. Zhang, K. Sheng, Z. Wang, W. J. Wu, B. H. Yin, J. Y. Zhu, and Y. T. Zhang, Rational design of MXene hollow fiber membranes for gas separations, Nano Lett., 23, 2710-2718 (2023).
  250. I. Ahmad, H. Jee, S. Song, M. Kim, T. Eisa, J. Jang, K.-J. Chae, C. Chuah, and E. Yang, Delaminated or multilayer Ti3C2TX-MXene-incorporated polydimethylsiloxane mixed-matrix membrane for enhancing CO2/N2 separation, Mater. Today Sustain., 23, 100410 (2023).
  251. C. Zhou, R. Shi, L. Shang, L. Z. Wu, C. H. Tung, and T. R. Zhang, Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production, Nano Res., 11, 3462-3468 (2018).
  252. Y. J. Ji, H. L. Dong, H. P. Lin, L. L. Zhang, T. J. Hou, and Y. Y. Li, Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane, RSC Adv., 6, 52377-52383 (2016).
  253. J. G. Cui, D. W. Qi, and X. Wang, Research on the techniques of ultrasound-assisted liquid-phase peeling, thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets, Ultrason. Sonochem., 48, 181-187 (2018).
  254. Y. Wang, X. C. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed., 51, 68-89 (2012).
  255. D. J. Martin, P. J. T. Reardon, S. J. A. Moniz, and J. W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, J. Am. Chem. Soc., 136, 12568-12571 (2014).
  256. J. Liu, Y. Yu, R. L. Qi, C. Y. Cao, X. Y. Liu, Y. J. Zheng, and W. G. Song, Enhanced electron separation on in-plane benzene-ring doped g-C3N4 nanosheets for visible light photocatalytic hydrogen evolution, Appl. Catal. B: Environ., 244, 459-464 (2019).
  257. A. Jomekian, B. Bazooyar, J. Esmaeilzadeh, and R. M. Behbahani, Highly CO2 selective chitosan/g-C3N4/ZIF-8 membrane on polyethersulfone microporous substrate, Sep. Purif. Technol., 236, 126961 (2020).
  258. L. Cheng, Y. Y. Song, H. M. Chen, G. Z. Liu, G. P. Liu, and W. Q. Jin, g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property, Sep. Purif. Technol., 250, 117200 (2020).
  259. Z. H. Niu, W. J. Luo, P. Mu, and J. Li, Nanoconfined CO2-philic ionic liquid in laminated g-C3N4 membrane for the highly efficient separation of CO2, Sep. Purif. Technol., 297, 121513 (2022).
  260. Y. S. Zhou, Y. Zhang, J. Xue, R. Wang, Z. J. Yin, L. Ding, and H. H. Wang, Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification, Chem. Eng. J., 420, 129574 (2021).
  261. B. K. Voon, H. S. Lau, C. Z. Liang, and W. F. Yong, Functionalized two-dimensional g-C3N4 nanosheets in PIM-1 mixed matrix membranes for gas separation, Sep. Purif. Technol., 296, 121354 (2022).
  262. M. Soto-Herranz, M. Sanchez-Bascones, A. Hernandez-Gimenez, J. I. Calvo-Diez, J. Martin-Gill, and P. Martin-Ramos, Effects of protonation ,hydroxylamination, and hydrazination of g-C3N4 on the performance of Matrimid®/g-C3N4 Membranes, Nanomaterials, 8, 1010 (2018).
  263. M. Asim, A. Khan, A. Helal, W. Alshitari, U. A. Akbar, and M. Y. Khan, A 2D graphitic-polytriaminopyrimidine (g-PTAP)/poly (ether-block-amide) mixed matrix membrane for CO2 separation, Chem. Asian J., 16, 1839-1848 (2021).
  264. F. Guo, D. S. Li, R. Ding, J. M. Gao, X. H. Ruan, X. B. Jiang, G. H. He, and W. Xiao, Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation, Sep. Purif. Technol., 280, 119803 (2022).
  265. C. L. Tan, X. H. Cao, X. J. Wu, Q. Y. He, J. Yang, X. Zhang, J. Z. Chen, W. Zhao, S. K. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117, 6225-6331 (2017).
  266. M. Sajid, S. M. S. Jillani, N. Baig, and K. Alhooshani, Layered double hydroxide-modified membranes for water treatment: Recent advances and prospects, Chemosphere, 287, 132140 (2022).
  267. Y. N. Wang, N. Zhang, H. Wu, Y. X. Ren, L. X. Yang, X. Y. Wang, Y. Z. Wu, Y. T. Liu, R. Zhao, and Z. Y. Jiang, Exfoliation-free layered double hydroxides laminates intercalated with amino acids for enhanced CO2 separation of mixed matrix membrane, J. Membr. Sci., 618, 118691 (2021).
  268. Y. T. Liu, H. Wu, L. F. Min, S. Q. Song, L. X. Yang, Y. X. Ren, Y. Z. Wu, R. Zhao, H. J. Wang, and Z. Y. Jiang, 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture, J. Membr. Sci., 598, 117663 (2020).
  269. N. Zhang, H. Wu, F. C. Li, S. Y. Dong, L. X. Yang, Y. X. Ren, Y. Z. Wu, X. Y. Wu, Z. Y. Jiang, and X. Z. Cao, Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation, J. Membr. Sci., 567, 272-280 (2018).
  270. W. J. Zheng, J. B. Yu, Z. Y. Hu, X. H. Ruan, X. C. Li, Y. Dai, and G. H. He, 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture, J. Membr. Sci., 653, 120542 (2022).
  271. H. Yang, S. Y. Liang, P. Zhang, X. J. Zhang, P. Lu, Y. Liu, X. Z. Cao, Y. S. Li, and Q. Wang, Improved CO2 separation performance of mixed matrix membranes via expanded layer double hydroxides and methanol post-treatment, J. Membr. Sci., 670, 121345 (2023).
  272. N. Y. Huang, C. C. Wang, and C. Y. Chen, Ethylene vinyl acetate copolymer/Mg-Al-layered double hydroxide nanocomposite membranes applied in CO2/N2 gas separation, Polym. Compos., 42, 4065-4072 (2021).
  273. N. Choudhary, M. A. Islam, J. H. Kim, T. J. Ko, A. Schropp, L. Hurtado, D. Weitzman, L. Zhai, and Y. Jung, Two-dimensional transition metal dichalcogenide hybrid materials for energy applications, Nano Today, 19, 16-40 (2018).
  274. D. Wang, Z. G. Wang, L. Wang, L. Hu, and J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale, 7, 17649-17652 (2015).
  275. H. T. Wang, H. T. Yuan, S. S. Hong, Y. B. Li, and Y. Cui, Physical and chemical tuning of two-dimensional transition metal dichalcogenides, Chem. Soc. Rev., 44, 2664-2680 (2015).
  276. L. W. Sun, Y. L. Ying, H. B. Huang, Z. G. Song, Y. Y. Mao, Z. P. Xu, and X. S. Peng, Ultrafast molecule separation through layered WS2 nanosheet membranes, ACS Nano, 8, 6304-6311 (2014).
  277. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2, 17033 (2017).
  278. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699-712 (2012).
  279. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263-275 (2013).
  280. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102-1120 (2014).
  281. G. H. Lee, Y. J. Yu, X. Cui, N. Petrone, C. H. Lee, M. S. Choi, D. Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, ACS Nano, 7, 7931-7936 (2013).
  282. B. Ahmed, D. H. Anjum, M. N. Hedhili, and H. N. Alshareef, Mechanistic insight into the stability of HfO2-coated MoS2 nanosheet anodes for sodium ion batteries, Small, 11, 4341-4350 (2015).
  283. G. P. Liu, W. Q. Jin, and N. P. Xu, Two-dimensional-material membranes: A new family of high-performance separation membranes, Angew. Chem. Int. Ed., 55, 13384-13397 (2016).
  284. M. M. Deng, K. Kwac, M. Li, Y. Jung, and H. G. Park, Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide, Nano Lett., 17, 2342-2348 (2017).
  285. Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320-2325 (2012).
  286. K. K. Liu, W. J. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Su, C. S. Chang, H. Li, Y. M. Shi, H. Zhang, C. S. Lai, and L. J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Lett., 12, 1538-1544 (2012).
  287. Y. J. Shen, H. X. Wang, X. Zhang, and Y. T. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS Appl. Mater. Interfaces, 8, 23371-23378 (2016).
  288. Y. C. Liu, C. Y. Chen, G. S. Lin, C. H. Chen, K. C. W. Wu, C. H. Lin, and K. L. Tung, Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement, J. Membr. Sci., 582, 358-366 (2019).
  289. N. F. Ishak, N. H. Othman, N. Jamil, N. H. Alias, F. Marpani, M. Z. Shahruddin, L. W. Jye, and A. F. Ismail, Fabrication of PES MMMs with improved separation performances using two-dimensional rGO/ZIF-8 and MoS2/ZIF-8 nanofillers, Pertani. J. Sci. Technol., 31, 2473-2485 (2023).