Acknowledgement
This study was supported by a grant from the Ministry of Health and Welfare (HI18C0530).
References
- Schwarz CG, Kremers WK, Arani A, Savvides M, Reid RI, Gunter JL, et al. A face-off of MRI research sequences by their need for de-facing. Neuroimage 2023;276:120199.
- Gao C, Landman BA, Prince JL, Carass A. Reproducibility evaluation of the effects of MRI defacing on brain segmentation. J Med Imaging (Bellingham) 2023;10:064001.
- Rubbert C, Wolf L, Turowski B, Hedderich DM, Gaser C, Dahnke R, et al. Impact of defacing on automated brain atrophy estimation. Insights Imaging 2022;13:54.
- Bhalerao GV, Parekh P, Saini J, Venkatasubramanian G, John JP; ADBS Consortium. Systematic evaluation of the impact of defacing on quality and volumetric assessments on T1-weighted MR-images. J Neuroradiol 2022;49:250-257. https://doi.org/10.1016/j.neurad.2021.03.001
- Buimer EEL, Schnack HG, Caspi Y, van Haren NEM, Milchenko M, Pas P, et al. De-identification procedures for magnetic resonance images and the impact on structural brain measures at different ages. Hum Brain Mapp 2021;42:3643-3655. https://doi.org/10.1002/hbm.25459
- de Sitter A, Visser M, Brouwer I, Cover KS, van Schijndel RA, Eijgelaar RS, et al. Facing privacy in neuroimaging: removing facial features degrades performance of image analysis methods. Eur Radiol 2020;30:1062-1074. https://doi.org/10.1007/s00330-019-06459-3
- Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement 2014;10:844-852. https://doi.org/10.1016/j.jalz.2014.01.001
- Bischoff-Grethe A, Ozyurt IB, Busa E, Quinn BT, Fennema-Notestine C, Clark CP, et al. A technique for the deidentification of structural brain MR images. Hum Brain Mapp 2007;28:892-903. https://doi.org/10.1002/hbm.20312
- Jeong YU, Yoo S, Kim YH, Shim WH. De-identification of facial features in magnetic resonance images: software development using deep learning technology. J Med Internet Res 2020;22:e22739.
- Ryu DW, Hong YJ, Cho JH, Kwak K, Lee JM, Shim YS, et al. Automated brain volumetric program measuring regional brain atrophy in diagnosis of mild cognitive impairment and Alzheimer's disease dementia. Brain Imaging Behav 2022;16:2086-2096. https://doi.org/10.1007/s11682-022-00678-x
- Theyers AE, Zamyadi M, O'Reilly M, Bartha R, Symons S, MacQueen GM, et al. Multisite comparison of MRI defacing software across multiple cohorts. Front Psychiatry 2021;12:617997.
- Schwarz CG, Kremers WK, Lowe VJ, Savvides M, Gunter JL, Senjem ML, et al. Face recognition from research brain PET: an unexpected PET problem. Neuroimage 2022;258:119357.
- Schwarz CG, Kremers WK, Weigand SD, Prakaashana CM, Senjem ML, Przybelski SA, et al. Effects of de-facing software mri_reface on utility of imaging biomarkers used in Alzheimer's disease research. Neuroimage Clin 2023;40:103507.
- Bruna R, Vaghari D, Greve A, Cooper E, Mada MO, Henson RN. Modified MRI anonymization (de-facing) for improved MEG coregistration. Bioengineering (Basel) 2022;9:591.
- Delbarre DJ, Santos L, Ganjgahi H, Horner N, McCoy A, Westerberg H, et al. Application of a convolutional neural network to the quality control of MRI defacing. Comput Biol Med 2022;151:106211.