DOI QR코드

DOI QR Code

COVID-19 Vaccination-Related Myocarditis: What We Learned From Our Experience and What We Need to Do in The Future

  • Jae-Hyeong Park (Department of Cardiology in Internal Medicine, Chungnam National University Hospital, Chungnam National University) ;
  • Kye Hun Kim (Department of Cardiovascular Medicine, Chonnam National University Medical School and Chonnam National University Hospital)
  • Received : 2024.02.13
  • Accepted : 2024.02.26
  • Published : 2024.06.01

Abstract

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 has led to a global health crisis with substantial mortality and morbidity. To combat the COVID-19 pandemic, various vaccines have been developed, but unexpected serious adverse events including vaccine-induced thrombotic thrombocytopenia, carditis, and thromboembolic events have been reported and became a huddle for COVID-19 vaccination. Vaccine-related myocarditis (VRM) is a rare but significant adverse event associated primarily with mRNA vaccines. This review explores the incidence, risk factors, clinical presentation, pathogenesis, management strategies, and outcomes associated with VRM. The incidence of VRM is notably higher in male adolescents and young adults, especially after the second dose of mRNA vaccines. The pathogenesis appears to involve an immune-mediated process, but the precise mechanism remains mostly unknown so far. Most studies have suggested that VRM is mild and self-limiting, and responds well to conventional treatment. However, a recent nationwide study in Korea warns that severe cases, including fulminant myocarditis or death, are not uncommon in patients with COVID-19 VRM. The long-term cardiovascular consequences of VRM have not been well understood and warrant further investigation. This review also briefly addresses the critical balance between the substantial benefits of COVID-19 vaccination and the rare risks of VRM in the coming endemic era. It emphasizes the need for continued surveillance, research to understand the underlying mechanisms, and strategies to mitigate risk. Filling these knowledge gaps would be vital to refining vaccination recommendations and improving patient care in the evolving COVID-19 pandemic landscape.

Keywords

Acknowledgement

We thank to Sung-Won Park for her excellent illustration.

References

  1. Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19. N Engl J Med 2020;383:2451-60. https://doi.org/10.1056/NEJMcp2009575
  2. Jung J. Preparations for the assessment of COVID-19 infection and long-term cardiovascular risk. Korean Circ J 2022;52:808-13. https://doi.org/10.4070/kcj.2022.0256
  3. Barouch DH. COVID-19 vaccines - immunity, variants, boosters. N Engl J Med 2022;387:1011-20. https://doi.org/10.1056/NEJMra2206573
  4. Liu R, Pan J, Zhang C, Sun X. Cardiovascular complications of COVID-19 vaccines. Front Cardiovasc Med 2022;9:840929.
  5. Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N Engl J Med 2020;383:2439-50. https://doi.org/10.1056/NEJMoa2027906
  6. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-16. https://doi.org/10.1056/NEJMoa2035389
  7. Falsey AR, Sobieszczyk ME, Hirsch I, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine. N Engl J Med 2021;385:2348-60. https://doi.org/10.1056/NEJMoa2105290
  8. Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med 2021;384:2187-201. https://doi.org/10.1056/NEJMoa2101544
  9. Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat Rev Cardiol 2015;12:670-80. https://doi.org/10.1038/nrcardio.2015.108
  10. Ammirati E, Frigerio M, Adler ED, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail 2020;13:e007405.
  11. Boehmer TK, Kompaniyets L, Lavery AM, et al. Association between COVID-19 and myocarditis using hospital-based administrative data - United States, March 2020-January 2021. MMWR Morb Mortal Wkly Rep 2021;70:1228-32. https://doi.org/10.15585/mmwr.mm7035e5
  12. Rafaniello C, Gaio M, Zinzi A, et al. Disentangling a thorny issue: myocarditis and pericarditis post COVID-19 and following mRNA COVID-19 vaccines. Pharmaceuticals (Basel) 2022;15:525.
  13. Verma AK, Lavine KJ, Lin CY. Myocarditis after COVID-19 mRNA vaccination. N Engl J Med 2021;385:1332-4. https://doi.org/10.1056/NEJMc2109975
  14. Heidecker B, Dagan N, Balicer R, et al. Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases. Eur J Heart Fail 2022;24:2000-18. https://doi.org/10.1002/ejhf.2669
  15. Heymans S, Cooper LT. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol 2022;19:75-7. https://doi.org/10.1038/s41569-021-00662-w
  16. Rout A, Suri S, Vorla M, Kalra DK. Myocarditis associated with COVID-19 and its vaccines - a systematic review. Prog Cardiovasc Dis 2022;74:111-21. https://doi.org/10.1016/j.pcad.2022.10.004
  17. Eckart RE, Love SS, Atwood JE, et al. Incidence and follow-up of inflammatory cardiac complications after smallpox vaccination. J Am Coll Cardiol 2004;44:201-5. https://doi.org/10.1016/j.jacc.2004.05.004
  18. Straus W, Urdaneta V, Esposito DB, et al. Analysis of Myocarditis among 252 million mRNA-1273 recipients worldwide. Clin Infect Dis 2023;76:e544-52. https://doi.org/10.1093/cid/ciac446
  19. Oster ME, Shay DK, Su JR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA 2022;327:331-40. https://doi.org/10.1001/jama.2021.24110
  20. Goddard K, Lewis N, Fireman B, et al. Risk of myocarditis and pericarditis following BNT162b2 and mRNA-1273 COVID-19 vaccination. Vaccine 2022;40:5153-9. https://doi.org/10.1016/j.vaccine.2022.07.007
  21. Simone A, Herald J, Chen A, et al. Acute myocarditis following COVID-19 mRNA vaccination in adults aged 18 years or older. JAMA Intern Med 2021;181:1668-70. https://doi.org/10.1001/jamainternmed.2021.5511
  22. Diaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson IV, Robicsek A. Myocarditis and pericarditis after vaccination for COVID-19. JAMA 2021;326:1210-2. https://doi.org/10.1001/jama.2021.13443
  23. Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol 2021;6:1202-6. https://doi.org/10.1001/jamacardio.2021.2833
  24. Canada government. Reported side effects following COVID-19 vaccination in Canada [Internet]. Ottawa: Canada government; 2023 [cited 2024 January 1]. Available from: https://health-infobase.canada.ca/covid-19/vaccine-safety/#detailedSafetySignals.
  25. Karlstad O, Hovi P, Husby A, et al. SARS-CoV-2 vaccination and myocarditis in a Nordic cohort study of 23 million residents. JAMA Cardiol 2022;7:600-12. https://doi.org/10.1001/jamacardio.2022.0583
  26. Patone M, Mei XW, Handunnetthi L, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med 2022;28:410-22. https://doi.org/10.1038/s41591-021-01630-0
  27. Le Vu S, Bertrand M, Jabagi MJ, et al. Age and sex-specific risks of myocarditis and pericarditis following COVID-19 messenger RNA vaccines. Nat Commun 2022;13:3633.
  28. Husby A, Hansen JV, Fosbol E, et al. SARS-CoV-2 vaccination and myocarditis or myopericarditis: population based cohort study. BMJ 2021;375:e068665.
  29. Massari M, Spila Alegiani S, Morciano C, et al. Postmarketing active surveillance of myocarditis and pericarditis following vaccination with COVID-19 mRNA vaccines in persons aged 12 to 39 years in Italy: a multi-database, self-controlled case series study. PLoS Med 2022;19:e1004056.
  30. Cho JY, Kim KH, Lee N, et al. COVID-19 vaccination-related myocarditis: a Korean nationwide study. Eur Heart J 2023;44:2234-43. https://doi.org/10.1093/eurheartj/ehad339
  31. Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. N Engl J Med 2021;385:2140-9. https://doi.org/10.1056/NEJMoa2109730
  32. Witberg G, Barda N, Hoss S, et al. Myocarditis after COVID-19 vaccination in a large health care organization. N Engl J Med 2021;385:2132-9. https://doi.org/10.1056/NEJMoa2110737
  33. Wong CK, Lau KT, Xiong X, et al. Adverse events of special interest and mortality following vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines in Hong Kong: a retrospective study. PLoS Med 2022;19:e1004018.
  34. Heymans S, Eriksson U, Lehtonen J, Cooper LT Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol 2016;68:2348-64. https://doi.org/10.1016/j.jacc.2016.09.937
  35. Sexson Tejtel SK, Munoz FM, Al-Ammouri I, et al. Myocarditis and pericarditis: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2022;40:1499-511. https://doi.org/10.1016/j.vaccine.2021.11.074
  36. Gilotra NA, Minkove N, Bennett MK, et al. Lack of relationship between serum cardiac troponin I level and giant cell myocarditis diagnosis and outcomes. J Card Fail 2016;22:583-5. https://doi.org/10.1016/j.cardfail.2015.12.022
  37. Younis A, Matetzky S, Mulla W, et al. Epidemiology characteristics and outcome of patients with clinically diagnosed acute myocarditis. Am J Med 2020;133:492-9. https://doi.org/10.1016/j.amjmed.2019.10.015
  38. Ammirati E, Veronese G, Brambatti M, et al. Fulminant versus acute nonfulminant myocarditis in patients with left ventricular systolic dysfunction. J Am Coll Cardiol 2019;74:299-311. https://doi.org/10.1016/j.jacc.2019.04.063
  39. Schauer J, Caris E, Soriano B, et al. The diagnostic role of echocardiographic strain analysis in patients presenting with chest pain and elevated troponin: a multicenter study. J Am Soc Echocardiogr 2022;35:857-67. https://doi.org/10.1016/j.echo.2022.03.009
  40. Caforio AL, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013;34:2636-48, 2648a-d. https://doi.org/10.1093/eurheartj/eht210
  41. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 2009;53:1475-87. https://doi.org/10.1016/j.jacc.2009.02.007
  42. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 2018;72:3158-76. https://doi.org/10.1016/j.jacc.2018.09.072
  43. McDonagh TA, Metra M, Adamo M, et al. 2023 Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2023;44:3627-39. https://doi.org/10.1093/eurheartj/ehad195
  44. Park SM, Lee SY, Jung MH, et al. Korean Society of Heart Failure guidelines for the management of heart failure: management of the underlying etiologies and comorbidities of heart failure. Korean Circ J 2023;53:425-51. https://doi.org/10.4070/kcj.2023.0114
  45. Kociol RD, Cooper LT, Fang JC, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation 2020;141:e69-92. https://doi.org/10.1161/CIR.0000000000000745
  46. Kim KH. The role of COVID-19 vaccination for patients with atherosclerotic cardiovascular disease in the upcoming endemic era. J Lipid Atheroscler 2024;13:21-8. https://doi.org/10.12997/jla.2024.13.1.21
  47. Wang WJ, Wang CY, Wang SI, Wei JC. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: a retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine 2022;53:101619.
  48. Notarte KI, Catahay JA, Velasco JV, et al. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: a systematic review. EClinicalMedicine 2022;53:101624.