Acknowledgement
방위사업청에서 지원한 23년 국방벤처지원사업(V230009) 의 연구결과로 작성된 논문입니다.
References
- L. Kratz and K. Nishino, "Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models," in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Miami, FL, 2009, pp. 1446-1453.
- H. Fu, S. Zhou, Z. Li, and D. Y. Yeung, "Robust Anomaly Detection in Videos Using Multilevel Representations," in Proc. of the 28th AAAI Conf. on Artificial Intelligence, Quebec, Canada, 2014, pp. 1717-1723.
- J. Nunez, Z. Li, S. Escalera, and K. Nasrollahi, "Identifying Loitering Behavior With Trajectory Analysis," in Proc. of the IEEE/CVF Winter Conf. on Applications of Computer Vision (WACV) Workshops, 2024, pp. 251-259. Available: https://openaccess.thecvf.com/content/WACV2024W/RWS/html/Nunez_Identifying_Loitering_Behavior_With_Trajectory_Analysis_WACVW_2024_paper.html
- M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, "Learning Temporal 4Regularity in Video Sequences," in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 733-742.
- . Wang, C. Ma, Y. Qiao, X. Lu, W. Hao, and S. Dong, "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, vol. 583, p. 126293, 2021.
- AI-Hub, "AI-Hub Data," Available: https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=171. [Accessed: Apr. 20, 2024].
- C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information," arXiv preprint arXiv:2402.13616, 2024.
- N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, "BoT-SORT: Robust associations multi-pedestrian tracking," arXiv preprint arXiv:2206.14651, 2022.
- AI-Hub, "AI-Hub Data," Available: https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=171. [Accessed: Apr. 20, 2024].
- Florida Wildlife Camera Trap Dataset, Available: https://www.crcv.ucf.edu/research/projects/florida-wildlife-camera-trap-dataset/. [Accessed: Apr. 20, 2024].