DOI QR코드

DOI QR Code

Secondary Phase Control of Lithium Ion-Substituted Potassium Niobate Ceramics via Stoichiometry Modification

화학양론 변화를 통한 리튬 이온 치환 니오브산 칼륨 세라믹의 이차상 제어 연구

  • Tae Soo Yeo (Department of Materials Science Engineering, Ulsan National Institute of Science and Technology) ;
  • Ju Hyeon Lee (Department of Materials Science Engineering, Ulsan National Institute of Science and Technology) ;
  • Wook Jo (Department of Materials Science Engineering, Ulsan National Institute of Science and Technology)
  • 여태수 (울산과학기술원 신소재공학과) ;
  • 이주현 (울산과학기술원 신소재공학과) ;
  • 조욱 (울산과학기술원 신소재공학과)
  • Received : 2024.06.12
  • Accepted : 2024.06.20
  • Published : 2024.09.01

Abstract

In line with the development of electronic devices and technologies, the demand for improving ferroelectric materials' performance is increasing. Since K0.5Na0.5NbO3 (KNN), an eco-friendly ferroelectric material that does not use lead and has a high Curie temperature, it is attracting attention to its usability as a high-temperature dielectric, and various studies are being conducted to increase performance. In a KNN having a perovskite structure, there was a simulation result that the KNN has higher spontaneous polarization when the A-site in which sodium ions exist is replaced with lithium ions. If the simulation results can be proven experimentally, the application range of KNN-based ferroelectric materials will increase. To this end, we tried to manufacture a K1-xLixNbO3 (KLN) with high electrical characteristics by fabricating niobium-deficient and potassium-excessive compositions, which attempt was made to solve the stoichiometry problem by volatilization and suppress secondary phases. If KLN's secondary phase suppression and relative permittivity improvement are successful, it will contribute to meeting the demand for developing electronic devices.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부가 지원하는 X9R 초과 MLCC용 원천 소재 기술개발 사업(2020M3D1A2102915)의 연구비 지원을 받아 수행되었습니다.

References

  1. A. Singh, S. Monga, N. Sharma, K. Sreenivas, and R. S. Katiyar, J. Asian Ceram. Soc., 10, 275 (2022). doi: https://doi.org/10.1080/21870764.2022.2075618
  2. T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M. H. Park, S. Fichtner, P. D. Lomenzo, M. Hoffmann, and U. Schroeder, J. Appl. Phys., 129, 100901 (2021). doi: https://doi.org/10.1063/5.0037617
  3. S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, IEEE Trans. Microwave Theory Tech., 50, 706 (2002). doi: https://doi.org/10.1109/22.989956
  4. M. C. Sekhar, E. Veena, N. S. Kumar, K.C.B. Naidu, A. Mallikarjuna, and D. B. Basha, Cryst. Res. Technol., 58, 2200130 (2023). doi: https://doi.org/10.1002/crat.202200130
  5. R. Lopez-Juarez, O. Novelo-Peralta, F. Gonzalez-Garcia, F. Rubio-Marcos, and M. E. Villafuerte-Castrejon, J. Eur. Ceram. Soc., 31, 1861 (2011). doi: https://doi.org/10.1016/j.jeurceramsoc.2011.02.031
  6. J. Wu, D. Xiao, and J. Zhu, J. Mater. Sci.: Mater. Electron., 26, 9297 (2015). doi: https://doi.org/10.1007/s10854-015-3084-2
  7. M. Ichiki, L. Zhang, M. Tanaka, and R. Maeda, J. Eur. Ceram. Soc., 24, 1693 (2004). doi: https://doi.org/10.1016/S0955-2219(03)00475-8
  8. L. Karacasulu, M. Karakaya, U. Adem, V. M. Sglavo, M. Biesuz, and C. Vakifahmetoglu, Open Ceram., 17, 100541 (2024). doi: https://doi.org/10.1016/j.oceram.2024.100541
  9. S.H.V. Oh, W. Hwang, K. Kim, J. H. Lee, and A. Soon, Adv. Sci., 9, 2104569 (2022). doi: https://doi.org/10.1002/advs.202104569
  10. S. Y. Chu, W. Water, Y. D. Juang, J. T. Liaw, and S. B. Dai, Ferroelectrics, 297, 11 (2003). doi: https://doi.org/10.1080/713642469
  11. D. Agustinawati, N. L. Isnaini, and S. Suasmoro, AIP Conf. Proc., 1788, 030129 (2017). doi: https://doi.org/10.1063/1.4968382
  12. N. Chaiyo, A. Ruangphanit, R. Muanghlua, S. Niemcharoen, B. Boonchom, and N. Vittayakorn, J. Mater. Sci., 46, 1585 (2011). doi: https://doi.org/10.1007/s10853-010-4967-5
  13. B. Sundarakannan, K. Kakimoto, and H. Ohsato, J. Appl. Phys., 94, 5182 (2003). doi: https://doi.org/10.1063/1.1610260
  14. C. Chen, Y. Huang, Y. Tan, and Y. Sheng, J. Alloys Compd., 663, 46 (2016). doi: https://doi.org/10.1016/j.jallcom.2015.12.106
  15. K. A. Kurilenko, D. V. Gorbunov, and O. A. Shlyakhtin, Ionics, 22, 601 (2016). doi: https://doi.org/10.1007/s11581-015-1581-1
  16. Y. Sugiura, Y. Saito, T. Endo, and Y. Makita, Cryst. Growth Des., 19, 4162 (2019). doi: https://doi.org/10.1021/acs.cgd.9b00656
  17. H. Kimura and S. Uda, J. Cryst. Growth, 311, 4094 (2009). doi: https://doi.org/10.1016/j.jcrysgro.2009.06.038
  18. M. Ferriol, M. Cochez, and M. Aillerie, J. Cryst. Growth, 311, 4343 (2009). doi: https://doi.org/10.1016/j.jcrysgro.2009.07.026
  19. W. Jo, D. Y. Kim, and N. M. Hwang, J. Am. Ceram. Soc., 89, 2369 (2006). doi: https://doi.org/10.1111/j.1551-2916.2006.01160.x
  20. M. Ferriol, M. Cochez, and M. Aillerie, J. Cryst. Growth, 311, 4343 (2009). doi: https://doi.org/10.1016/j.jcrysgro.2009.07.026
  21. P. Kumar, M. Pattanaik, and Sonia, Ceram. Int., 39, 65 (2013). doi: https://doi.org/10.1016/j.ceramint.2012.05.093
  22. A. Peter, I. Hajdara, K. Lengyel, G. Dravecz, L. Kovacs, and M. Toth, J. Alloys Compd., 463, 398 (2008). doi: https://doi.org/10.1016/j.jallcom.2007.09.038
  23. B. A. Scott, E. A. Giess, B. L. Olson, G. Burns, A. W. Smith, and D. F. O'Kane, Mater. Res. Bull., 5, 47 (1970). doi: https://doi.org/10.1016/0025-5408(70)90072-3
  24. K. I. Kakimoto, I. Masuda, and H. Ohsato, Jpn. J. Appl. Phys., 42, 6102 (2003). doi: https://doi.org/10.1143/JJAP.42.6102
  25. H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, S. H. Park, and H. G. Lee, J. Am. Ceram. Soc., 90, 1812 (2007). doi: https://doi.org/10.1111/j.1551-2916.2007.01698.x