DOI QR코드

DOI QR Code

A comprehensive stress analysis in a functionally graded spherical pressure vessel: Thermo-elastic, elastoplastic and residual stress analysis

  • Thaier J. Ntayeesh (Faculty of Mechanical Engineering, College of Engineering, University of Baghdad ) ;
  • Mohsen Kholdi (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan) ;
  • Soheil Saeedi (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan) ;
  • Abbas Loghman (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan) ;
  • Mohammad Arefi (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
  • 투고 : 2023.11.28
  • 심사 : 2024.07.29
  • 발행 : 2024.08.10

초록

Analyzing thermoelastic, elastoplastic, and residual stresses is pivotal for deepening our insights into material characteristics, particularly in the engineering of advanced materials like functionally graded materials (FGM). This research delves into these stress types within a thick-walled sphere composed of Al-SiC FGM, employing a detailed successive approximation method (SAM) to pinpoint stress distributions under varied loading scenarios. Our investigation centers on how the sphere's structure responds to different magnitudes of internal pressure. We discover that under various states-thermoelastic, elastoplastic, and residual-the radial stresses are adversely impacted, manifesting negative values due to the compressive nature induced by internal pressures. Notably, the occurrence of reverse yielding, observed at pressures above 410 MPa, merits attention due to its significant implications on the sphere's structural integrity and operational efficacy. Employing the SAM allows us to methodically explore the nuanced shifts in material properties across the sphere's thickness. This study not only highlights the critical behaviors of Al-SiC FGM spheres under stress but also emphasizes the need to consider reverse yielding phenomena to maintain safety and reliability in their application. We advocate for ongoing refinement of analytical techniques to further our understanding of stress behaviors in various FGM configurations, which could drive the optimized design and practical application of these innovative materials in diverse engineering fields.

키워드

참고문헌

  1. Akbari, A. (2021), "Analytical solution of elastic-plastic stress for double-layer FGM spherical shell subjected to pressure and temperature load", J. Braz. Soc. Mech. Sci. Eng., 43(2), 79. https://doi.org/10.1007/s40430-020-02780-x
  2. Ali, A., Zhang, C., Bibi, T. and Sun, L. (2024), "Experimental investigation of sliding-based isolation system with re-centering functions for seismic protection of masonry structures", Struct., 60, 105871. https://doi.org/10.1016/j.istruc.2024.105871.
  3. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761.
  4. Abdul-Majeed, W.R., Jweeg, M.J. and Jameel, A.N. (2011), "Thermal buckling of rectangular plates with different temperature distribution using strain energy method", J. Eng., 17(5), 1047-1065. http://dx.doi.org/10.31026/j.eng.2011.05.02.
  5. Alabas, M.B. and Majid, W.I. (2020), "Thermal buckling analysis of laminated composite plates with general elastic boundary supports", J. Eng., 26(3), 1-17. http://dx.doi.org/10.31026/j.eng.2020.03.01.
  6. Alobaidi, H.E. and Al-Zuhairi, A.H. (2024), "Numerical simulation of the behaviour of RC T-Beams strengthened by EB-CFRP composites under bending and shear effects", J. Eng., 30(07), 59-76. http://dx.doi.org/10.31026/j.eng.2024.07.04.
  7. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
  8. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
  9. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427.
  10. Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  11. Arefi, M. and Rahimi, G.H. (2012), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5.
  12. Arefi, M. and Rahimi, G.H. (2012), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped-clamped FG cylinder under mechanical nd thermal loads", Int. J. Pres. Ves. Piping., 96, 30-37. https://doi.org/10.1016/j.ijpvp.2012.05.009.
  13. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.
  14. Arefi, M. (2014), "A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009.
  15. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001.
  16. Arefi, M., Faegh, R.K. and Loghman, A. (2016), "The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell", J. Therm. Stresses, 39(12), 1539-1559. https://doi.org/10.1080/01495739.2016.1217178.
  17. Arefi, M. and Zenkour, A.M. (2017), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
  18. Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel. Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/scs.2018.26.4.421.
  19. Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aer. Sci. Tech., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036.
  20. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2018), "Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate", Compos. Part B: Eng., 151, 35-50. https://doi.org/10.1016/j.compositesb.2018.05.050.
  21. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel. Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  22. Arefi, M. and Zenkour, A.M. (2019), "Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko's sandwich piezoelectric microbeam", J. Sandw. Struct. Mater., 21(4), 1243-1270. https://doi.org/10.1177/1099636217714181.
  23. Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580.
  24. Arefi, M., Mohammad-Rezaei, Bidgoli, E. and Zenkour, A.M. (2019), "Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface", Mech. Adv. Mater. Struct., 26(9), 741-752. https://doi.org/10.1080/15376494.2018.1455939.
  25. Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.
  26. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279.
  27. Arefi, M., Moghaddam, S.K., Bidgoli, E.M.R., Kiani, M. and Civalek, O. (2021), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads", Compos. Struct., 255(1), 112924. https://doi.org/10.1016/j.compstruct.2020.112924.
  28. Arslan, E. and Mack, W. (2023), "Sensitivity of predicted stresses in thick-walled steel/ceramics spherical FGM-structures to parameter uncertainties", PAMM., 22(1), e202200161. https://doi.org/10.1002/pamm.202200161.
  29. Arslan, E., Mack, W. and Apatay, T.U.N.C . (2021), "Thermo-mechanically loaded steel/aluminum functionally graded spherical containers and pressure vessels", Int. J. Pres. Ves. Piping, 191, 104334. https://doi.org/10.1016/j.ijpvp.2021.104334.
  30. Bai, B., Bai, F., Li, X., Nie, Q., Jia, X. and Wu, H. (2022). "The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste", Env. Tech. Innov., 28, 102944. https://doi.org/10.1016/j.eti.2022.102944.
  31. Bai, B., Xu, T., Nie, Q. and Li, P. (2020), "Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils", Int. J. Heat. Mass. Transf., 153, 119573. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119573.
  32. Bai, B., Bai, F., Nie, Q. and Jia, X. (2023), "A high-strength red mud-fly ash geopolymer and the implications of curing temperature", Powder. Tech., 416, 118242. https://doi.org/10.1016/j.powtec.2023.118242.
  33. Bai, B., Chen, J., Zhang, B. and Wang, H. (2024a), "Migration trajectories and blocking effect of the fine particles in porous media based on particle flow simulation", AIP Adv., 14, 045036. http://dx.doi.org/10.1063/5.0199046.
  34. Bai, B., Chen, J., Bai, F., Nie, Q. and Jia, X. (2024b), "Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues", Env. Tech. Innov., 33, 103485. https://doi.org/10.1016/j.eti.2023.103485
  35. Jing, C., Bing, B. and Qiang, D. (2024), "Durability evaluation of a high-performance red mud-based composite material", Mater. Today. Com., 39, 108684. https://doi.org/10.1016/j.mtcomm.2024.108684.
  36. Bagri, A. and Eslami, M.R. (2007), "A unified generalized thermoelasticity; solution for cylinders and spheres", Int. J. Mech. Sci., 49(12), 1325-1335. https://doi.org/10.1016/j.ijmecsci.2007.04.004.
  37. Banh, T.T., Luu, N.G., Lieu, Q.X., Lee, J., Kang, J. and Lee, D. (2021), "Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid", Steel. Compos. Struct., 41(3), 385-402. https://doi.org/10.12989/scs.2021.41.3.385.
  38. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel. Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  39. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct, 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  40. Benlahcen, F., Belakhdar, K., Sellami, M. and Tounsi, A. (2018), "Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation", Steel Compos. Struct, 29(5), 591-602. https://doi.org/10.12989/scs.2018.29.5.591.
  41. Bhattacharyya, M., Kapuria, S. and Kumar, A.N. (2007), "On the stress to strain transfer ratio and elastic deflection behavior for Al/SiC functionally graded material", Mech. Adv. Mater. Struct., 14(4), 295-302. https://doi.org/10.1080/15376490600817917.
  42. Cho, J.R. and Oden, J.T. (2000), "Functionally graded material: A parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme", Comput. Method Appl. Mech. Eng., 188(1-3), 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3.
  43. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Tech., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  44. Chen, D., Zhao, T., Han, L. and Feng, Z. (2022a), "Single-stage multi-input buck type high-frequency link's inverters with series and simultaneous power supply", IEEE. Trans. Power Electron., 37(6), 7411-7421. https://doi.org/10.1109/TPEL.2021.3139646.
  45. Chen, D., Zhao, T. and Xu, S. (2022b), "Single-stage multi-input buck type high-frequency link's inverters with multiwinding and time-sharing power supply", IEEE. Trans. Power. Electron., 37(10), 12763-12773. https://doi.org/10.1109/TPEL.2022.3176377.
  46. Chen, F., Zhang, H., Li, Z., Luo, Y., Xiao, X. and Liu, Y. (2023a), "Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks", Adv. Struct. Eng., 27(1), 35-50. https://doi.org/10.1177/13694332231213462.
  47. Chen, X., Yang, P., Peng, Y., Wang, M., Hu, F. and Xu, J. (2023b), "Output voltage drop and input current ripple suppression for the pulse load power supply using virtual multiple quasi-notch-filters impedance", IEEE. Tran. Power. Electron., 38(8), 9552-9565. https://doi.org/0.1109/TPEL.2023.3275304. 109/TPEL.2023.3275304
  48. Chen, D., Zhao, J. and Qin, S. (2023c), "SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio", Sci. China Technol. Sci., 66, 2996-3010. https://doi.org/10.1007/s11431-022-2394-4.
  49. Dou, J., Liu, J., Wang, Y., Zhi, L., Shen, J. and Wang, G. (2023). "Surface activity, wetting, and aggregation of a perfluoropolyether quaternary ammonium salt surfactant with a kydroxyethyl group", Molecules, 28, 7151. https://doi.org/10.3390/molecules28207151.
  50. Darijani, H., Kargarnovin, M.H. and Naghdabadi, R. (2009), "Design of spherical vessels under steady-state thermal loading using thermo-elasto-plastic concept", Int. J. Press. Ves. Pip., 86(2-3), 143-152. https://doi.org/10.1016/j.ijpvp.2008.12.001.
  51. Dong, X., Chen, T. and Zhou, G. (2024), "Design high performance field-effect, strain/gas sensors of novel 2D penta-like Pd2P2SeX (X=O,S,Te) pin-junction nanodevices: A study of transport properties", J. Alloys. Compoun., 977, 173417. https://doi.org/10.1016/j.jallcom.2024.173417.
  52. Ebrahimi, T., Nejad, M.Z., Jahankohan, H. and Hadi, A. (2021), "Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels", Steel. Compos. Struct., 38(2), 189-211. https://doi.org/10.12989/scs.2021.38.2.189.
  53. Eldeeb, A.M., Shabana, Y.M. and Elsawaf, A. (2021), "Thermo-elastoplastic behavior of a rotating sandwich disc made of temperature-dependent functionally graded materials", J. Sandw. Struct. Mater., 23(5), 1761-1783. https://doi.org/10.1177/1099636220904970.
  54. Fattah, M.Y., Zbar, B.S. and Al-kalali, H.H.M. (2016), "Three-dimensional finite element simulation of the buried pipe problem in geogrid reinforced soil", J. Eng., 22(5), 60-73. https://doi.org/10.31026/j.eng.2016.05.05.
  55. Gong, Q., Cai, M., Gong, Y., Chen, M., Zhu, T. and Liu, Q. (2024), "Grinding surface and subsurface stress load of nickel-based single crystal superalloy DD5", Prec. Eng., 88, 354-366. https://doi.org/10.1016/j.precisioneng.2024.02.017
  56. Guo, M., Huang, H., Zhang, W., Xue, C. and Huang, M. (2022), "Assessment of RC Frame Capacity Subjected to a Loss of Corner Column", J. Struct. Eng., 148(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003423.
  57. Ghasemi, M., Zhang, C., Khorshidi, H., Zhu, L. and Hsiao, P. (2023), "Seismic upgrading of existing RC frames with displacement-restraint cable bracing", Eng. Struct., 282, 115764. https://doi.org/10.1016/j.engstruct.2023.115764.
  58. Gao, X.K., He, Q., Liu, P.K., Shao, X.J. and Wang, Z.S. (2020), "Simulation analysis of residual stress of autofrettaged barrel under multi-field coupling loads", J. Phys.: Conf. Ser., 8, 082025. https://doi.org/10.1088/1742-6596/1507/8/082025.
  59. Gao, X.L., Wen, J.F., Xuan, F.Z. and Tu, S.T. (2015), "Autofrettage and shakedown analyses of an internally pressurized thick-walled cylinder based on strain gradient plasticity solutions", J. Appl. Mech., 82(4), 041010. https://doi.org/10.1007/s00707-016-1695-1.
  60. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel. Compos. Struct., 34(2), 227-239. https://doi.org/10.12989/scs.2020.34.2.227.
  61. Ghorbanpour, A., Loghman, A., Khademizadeh, H. and Moradi, M. (2003), "The overstrain of thick-walled cylinders considering the Bauschinger effect factor (BEF)", KSME Int. J., 17, 477-483. https://doi.org/10.1007/BF02984448.
  62. Guo, J., Liu, Y., Zou, Q., Ye, L., Zhu, S. and Zhang, H. (2023), "Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM", J. Hydrology., 624, 129969. https://doi.org/10.1016/j.jhydrol.2023.129969.
  63. Han, D., Zhou, H., Weng, T.H., Wu, Z., Han, B., Li, K.C. and Pathan, A.S.K. (2023), "LMCA: A lightweight anomaly network traffic detection model integrating adjusted mobilenet and coordinate attention mechanism for IoT", Telecom. Syst., 84, 549-564. https://doi.org/10.1007/s11235-023-01059-5.
  64. Hendi, A.A., Eltaher, M.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel. Compos. Struct., 41(6), 787-803. http://dx.doi.org/10.12989/scs.2021.41.6.787.
  65. Huang, H., Huang, M., Zhang, W., Guo, M., Chen, Z. and Li, M. (2021), "Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP", J. Build. Eng., 43, 103123. https://doi.org/10.1016/j.jobe.2021.103123.
  66. Hasan, H.M. (2017), "Thermo elastic analysis of carbon nanotube-reinforced composite cylinder utilizing finite element method with the theory of elasticity", J. Eng., 23(8), 29-45. http://dx.doi.org/10.31026/j.eng.2017.08.03.
  67. Hasan, H.M. and Swadi, M.J. (2019), "Effect of thickness variable on the bending analysis of rotating functionally polymer graded carbon nanotube reinforced cylindrical panels", J. Eng., 25(4), 155-172. https://doi.org/10.31026/j.eng.2019.04.11.
  68. Hong, J., Gui, L. and Cao, J. (2023), "Analysis and experimental verification of the tangential force effect on electromagnetic vibration of PM motor", IEEE. Trans. Energy. Conv., 38(3), 1893-1902. https://doi.org/10.1109/TEC.2023.3241082.
  69. He, X., Xiong, Z., Lei, C., Shen, Z., Ni, A., Xie, Y. and Liu, C. (2023), "Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching", Carbon., 213, 118200. https://doi.org/10.1016/j.carbon.2023.118200.
  70. Ibrahim, W.M. and Ghani, R.A. (2017), "Free vibration analysis of laminated composite plates with General Elastic Boundary Supports", J. Eng., 23(4), 100-124. http://dx.doi.org/10.31026/j.eng.2017.04.07.
  71. Jameel, A.N., Sadiq, I.A. and Nsaif, H.I. (2012), "Buckling analysis of composite plates under thermal and mechanical loading", J. Eng., 18(12), 1365-1389. https://doi.org/10.31026/j.eng.2012.12.06.
  72. Jameel, A.N., Al-Sahib, N.K.A. and Abd, Al, Latteef, O.F. (2010), "Residual stress distribution for a single pass weld in pipe", J. Eng., 16(01), 4618-4630. https://doi.org/110.31026/j.eng.2010.01.18.
  73. Jiang, Y., Liu, L., Yan, J. and Wu, Z. (2024), "Room-to-low temperature thermo-mechanical behavior and corresponding constitutive model of liquid oxygen compatible epoxy composites", Compos. Sci. Tech., 245, 110357. https://doi.org/10.1016/j.compscitech.2023.110357.
  74. Jabbari, M., Mohazzab, A.H. and Bahtui, A. (2006), "One dimensional moving heat source in hollow FGM cylinder", ASME Press. Ves. Pip. Conf., 47543, 259-265. https://doi.org/10.1115/PVP2006-ICPVT-11-93145.
  75. Jahed, H., Farshi, B. and Hosseini, M. (2007), "The actual unloading behavior effect on thermo-mechanical stress intensity factor and life of autofrettage tubes", Int. J. Fatigue., 29(2), 360-369. https://doi.org/10.1016/j.ijfatigue.2006.02.053.
  76. Jia, G., Luo, J., Cui, C., Kou, R., Tian, Y. and Schubert, M. (2024), "Valley quantum interference modulated by hyperbolic shear polaritons", Phys. Rev. B., 109(15), 155417. https://doi.org/10.1103/PhysRevB.109.155417.
  77. Johnson, W. and Mellor, P.B. (1973), Engineering Plasticity, Cambridge University Press.
  78. Kamal, S.M. (2022), "Estimation of optimum rotational speed for rotational autofrettage of disks incorporating Bauschinger effect", Mech. Based. Design. Struct. Mach., 50(7), 2535-2554. https://doi.org/10.1080/15397734.2020.1780608.
  79. Kaman, M.O. and Cetisli, F. (2012), "Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by θo", Steel. Compos. Struct., 13(2), 187-206. https://doi.org/10.12989/scs.2012.13.2.187.
  80. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(01), 1850008. https://doi.org/10.1142/S1758825118500084.
  81. Keles, I. and Conker, C. (2011), "Transient hyperbolic heat conduction in thick-walled FGM cylinders and spheres with exponentially-varying properties", Eur. J. Mech.-A/Solids, 30(3), 449-455. https://doi.org/10.1016/j.euromechsol.2010.12.018.
  82. Kholdi, M., Loghman, A., Ashrafi, H. and Arefi, M. (2020), "Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis", Proc. Ins. Mech. Eng., Part L: J. Mater.: Design Appl., 234(1), 186-197. https://doi.org/10.1177/1464420719882958.
  83. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2021), "Analysis of thick-walled spherical shells subjected to various temperature gradients: Thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 13(09), 2150105. http://dx.doi.org/10.1177/1464420719882958.
  84. Kholdi, M., Saeedi, S., Zargar Moradi, S.A., Loghman, A. and Arefi, M. (2022), "A successive approximation method for thermo-elasto-plastic analysis of a reinforced functionally graded rotating disc", Arch. Civ. Mech. Eng., 22, 1-13. https://doi.org/10.1007/s43452-021-00321-4.
  85. Khoshgoftar, M., Rahimi, M.J. and Arefi, G.H. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001.
  86. Lori, Dehsaraji, M., Arefi, M. and Loghman, A. (2021), "Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect", Def. Tech., 17(1), 119-134. https://doi.org/10.1016/j.dt.2020.01.001.
  87. Lei, M., Liao, H., Wang, S., Zhou, H., Zhu, J., Wan, H. and Qu, X. (2024), "Electro-Sorting create heterogeneity: Constructing a multifunctional janus film with integrated compositional and microstructural gradients for guided bone regeneration", Adv. Sci., 11(12), 2307606. https://doi.org/10.1002/advs.202307606.
  88. Liu, Z., Xu, Z., Zheng, X., Zhao, Y. and Wang, J. (2024), "3D path planning in threat environment based on fuzzy logic", J. Intel. Fuzzy. Syst., 46(3), 7021-7034. https://doi.org/10.3233/JIFS232076.
  89. Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023), "Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck", Metals, 13(8), 1402. https://doi.org/10.3390/met13081402.
  90. Li, G., Li, Y., Shi, J., Zhang, S. and Mitrouchev, P. (2020), "Analysis of residual stress for autofrettage high pressure cylinder", Adv. Manuf. Automat., 9, 20-28. https://doi.org/10.1007/978-981-15-2341-0_3.
  91. Loffredo, M., Bagattini, A., Monelli, B.D. and Beghini, M. (2018), "Modeling and measuring residual stress in autofrettaged hollow cylinders through the initial strain distribution method", J. Pres. Ves. Tech., 140(1), 011402. https://doi.org/10.1115/1.4038227
  92. Loghman, A. and Wahab, M.A. (1994), "Loading and unloading of thick-walled cylindrical pressure vessels of strain-hardening material", J. Press. Ves. Technol, 116(2), 105-109. https://doi.org/10.1115/1.2929562.
  93. Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the Θ projection concept", Int. J. Pres. Ves. Piping., 67(1), 105-111. https://doi.org/10.1016/0308-0161(94)00175-8.
  94. Megahed, M.M. and Abbas, A.T. (1991), "Influence of reverse yielding on residual stresses induced by autofrettage", Int. J. Mech. Sci., 33(2), 139-150. https://doi.org/10.1016/0020-7403(91)90063-9.
  95. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel. Compos. Struct., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513.
  96. Moradi, A., Poorveis, D. and Khajehdezfuly, A. (2022), "Buckling of FGM elliptical cylindrical shell under follower lateral pressure", Steel. Compos. Struct., 45(2), 175-191. https://doi.org/10.12989/scs.2022.45.2.175.
  97. Majeed, W.I., Al-Samarraie, S.A. and AL-SAIOR, M.M. (2013), "Vibration control analysis of a smart flexible cantilever beam using smart material", J. Eng., 19(01), 82-95. http://dx.doi.org/10.31026/j.eng.2013.01.06.
  98. Mohammadi, M., Arefi, M., Dimitri, R. and Tornabene, F. (2019), "Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation", Nanomater., 9(1), 79. https://doi.org/10.3390/nano9010079.
  99. Mohammed, H.A., U.-Q. and Wasmi, H.R. (2018), "Active vibration control of cantilever beam by using optimal LQR controller", J. Eng., 24(11), 1-17. http://dx.doi.org/10.31026/j.eng.2018.11.01.
  100. Meng, S., Meng, F., Chi, H., Chen, H. and Pang, A. (2023), "A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries", J. Franklin. Inst., 360(16), 11397-11413. https://doi.org/10.1016/j.jfranklin.2023.08.037.
  101. Nayak, P., Bhowmick, S. and Saha, K.N. (2020), "Elasto-plastic analysis of thermo-mechanically loaded functionally graded disks by an iterative variational method", Eng. Sci. Tech., 23(1), 42-64. https://doi.org/10.1016/j.jestch.2019.04.007.
  102. Nejad, M.Z., Abedi, M., Lotfian, M.H. and Ghannad, M. (2012), "An exact solution for stresses and displacements of pressurized FGM thick-walled spherical shells with exponential-varying properties", J. Mech. Sci. Tech., 26, 4081-4087. https://doi.org/10.1007/s12206-012-0908-3.
  103. Oukaili, N.K. and Al-Asadi, A.A. (2010), "Analysis of Concrete Flexural Members Reinforced with Fibre Polymer", J. Eng., 16(03), 5569-5587. https://doi.org/10.31026/j.eng.2010.03.19.
  104. Pronina, Y.G. (2015), "Analytical solution for decelerated mechanochemical corrosion of pressurized elastic-perfectly plastic thick-walled spheres", Cor. Sci., 90, 161-167. https://doi.org/10.1016/j.corsci.2014.10.007.
  105. Qasim, R.M. and Aljalawi, N.M.F. (2024), "The effect of different curing temperatures on properties of reactive powder concrete reinforced by micro steel fibers", J. Eng., 30(06), 57-66. https://doi.org/10.31026/j.eng.2024.06.04.
  106. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875.
  107. Saeedi, S., Kholdi, M., Loghman, A., Ashrafi, H. and Arefi, M. (2021), "Thermo-elasto-plastic analysis of thick-walled cylinder made of functionally graded materials using successive approximation method", Int. J. Pres. Ves. Piping., 194, 104481. https://doi.org/10.1016/j.ijpvp.2021.104481.
  108. Saeedi, S., Kholdi, M., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Axisymmetric thermoelastic analysis of long cylinder made of FGM reinforced by aluminum and silicone carbide using DQM", Arch. Civ. Mech. Eng., 22(1), 48. https://doi.org/10.1007/s43452-022-00376-x.
  109. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A., (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel. Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  110. Sedova, O. and Pronina, Y. (2022), "The thermoelasticity problem for pressure vessels with protective coatings, operating under conditions of mechanochemical corrosion", Int. J. Eng. Sci., 170, 103589. https://doi.org/10.1016/j.ijengsci.2021.103589.
  111. Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel. Compos. Struct., 34(3), 361-76. https://doi.org/10.12989/scs.2020.34.3.361.
  112. Shariyat, M. and Ghafourinam, M. (2019), "Hygrothermomechanical creep and stress redistribution analysis of thick-walled FGM spheres with temperature and moisture dependent material properties and inelastic radius changes", Int. J. Pres. Ves. Piping., 169, 94-114. https://doi.org/10.1016/j.ijpvp.2018.11.011.
  113. Singh, R.J., Kumar, R., Mishra, J. and Balasubramaniyam, V. (2019), "Study the effect of anisotropy of elastic-plastic properties on residual stress development in autofrettage of thick cylinder", Proc. Struct. Integ., 14, 549-555. https://doi.org/10.1016/j.prostr.2019.05.067.
  114. Strashnov, S., Alexandrov, S. and Lang, L. (2019), "Description of residual stress and strain fields in FGM hollow disc subject to external pressure", Mater., 12(3), 440. https://doi.org/10.3390%2Fma12030440. https://doi.org/10.3390%2Fma12030440
  115. Suresh, S. (1977). "Functionally graded metals and metal-ceramic composites: Part 2 thermomechanical behavior", Int. Mater. Rev., 29, 306-312. https://doi.org/10.1179/imr.1997.42.3.85.
  116. Shen, Z., Dong, R., Li, J., Su, Y. and Long, X. (2024), "Determination of gradient residual stress for elastoplastic materials by nanoindentation", J. Manufact. Proc., 109, 359-366. https://doi.org/10.1016/j.jmapro.2023.10.030.
  117. Shi, X.L., Cao, J., Li, X., Zhang, J., Gong, H. and Liu, S. (2024), "Polyetheretherketone fiber-supported polyethylene glycols for phase-transfer catalysis in its surface layer", Colloids. Surf. A: Physicochem. Eng. Asp., 694, 134160. https://doi.org/10.1016/j.colsurfa.2024.134160.
  118. Sadiq, I.A. and Majeed, W. (2019), "Thermal buckling of angle-ply laminated plates using new displacement function", J. Eng., 25(12), 96-113. https://doi.org/10.31026/j.eng.2019.12.08.
  119. Sadiq, I.A. and Abdul-Ameer, H.S. (2017), "Static analysis of laminated composite plate using new higher order shear deformation plate theory", J. Eng., 23(2), 41-61. https://doi.org/10.31026/j.eng.2017.02.04.
  120. Shi, S., Han, D. and Cui, M. (2023), "A multimodal hybrid parallel network intrusion detection model", Con. Sci., 35(1). https://doi.org/10.1080/09540091.2023.2227780.
  121. Tang, H., Li, Y., Zhu, Z., Zhan, Y., Li, Y., Li, K. and Yang, X. (2024), "Rational design of high-performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties", Appl. Polym. Sci., 141(24), e55502. https://doi.org/10.1002/app.55502.
  122. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Waves. Rand. Complex. Media, 34(3), 1-24. https://doi.org/10.1080/17455030.2021.1942310.
  123. Wasmi, H.R., Sadiq, I.A. and Lafta, M.A. (2015), "Non-linear analysis of laminated composite plates under general out-of-plane loading", J. Eng., 21(02), 119-143. http://dx.doi.org/10.31026/j.eng.2015.02.08.
  124. Wang, P., Yuan, P., Sahmani, S. and Safaei, B. (2021), "Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA", Thin. Wall. Struct., 166, 108101. https://doi.org/10.1016/j.tws.2021.108101.
  125. Wen, J.F., Gao, X.L., Xuan, F.Z. and Tu, S.T. (2017), "Autofrettage and shakedown analyses of an internally pressurized thick-walled spherical shell based on two strain gradient plasticity solutions", Acta. Mech., 228, 89-105. https://doi.org/10.1007/s00707-016-1695-1.
  126. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra-high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  127. Wang, Y., Xu, J., Qiao, L., Zhang, Y. and Bai, J. (2023a), "Improved amplification factor transport transition model for transonic boundary layers", AIAA. J., 61(9), 3866-3882. https://doi.org/10.2514/1.J062341.
  128. Wang, H., Han, D., Cui, M. and Chen, C. (2023b), "NAS-YOLOX: a SAR ship detection using neural architecture search and multi-scale attention", Con. Sci., 35(1), 1-32. https://doi.org/10.1080/09540091.2023.2257399.
  129. Wang, K., Liu, Z., Wu, M., Wang, C., Shen, W. and Shao, J. (2024), "Experimental study of mechanical properties of hot dry granite under thermal-mechanical couplings", Geothermics, 119, 102974. https://doi.org/10.1016/j.geothermics.2024.102974.
  130. Wu, Z., Zhang, Y., Zhang, L. and Zheng, H. (2023), "Interaction of cloud dynamics and microphysics during the rapid intensification of super-typhoon nanmadol (2022) based on multi-satellite observations", Geophys. Res. Let., 50(15), e2023GL104541. https://doi.org/10.1029/2023GL104541.
  131. Xie, X., Gao, Y., Hou, F., Cheng, T., Hao, A. and Qin, H. (2024a), "Fluid inverse volumetric modeling and applications from surface motion", IEEE. Trans. Visualiz. Comput. Graph., 01, 1-17. https://doi.org/10.1109/TVCG.2024.3370551.
  132. Xie, G., Fu, B., Li, H., Du, W., Zhong, Y., Wang, L. and Si, L. (2024b), "A gradient-enhanced physics-informed neural networks method for the wave equation", Eng. Anal. Bound. Elem., 166, 105802. https://doi.org/10.1016/j.enganabound.2024.105802.
  133. Yu, J., Zhu, Y., Yao, W., Liu, X., Ren, C., Cai, Y. and Tang, X. (2021), "Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures", Measurement, 182, 109777. https://doi.org/10.1016/j.measurement.2021.109777.
  134. Yuan, Y., Zhao, X., Zhao, Y., Sahmani, S. and Safaei, B. (2021), "Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation", Thin. Wall. Struct., 159, 107249. https://doi.org/10.1016/j.tws.2020.107249.
  135. Zaoui, F.Z., Ouinas, D., Tounsi, A., Achour, B., Olay, J.A.V. and Butt, T.A. (2023), "Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT", Steel. Compos. Struct., 47(5), 551. https://doi.org/10.12989/scs.2023.47.5.551.
  136. Zhao, Y., Wang, J., Cao, G., Yuan, Y., Yao, X. and Qi, L. (2023), "Intelligent control of multilegged robot smooth motion: A review," IEEE. Access., 11, 86645-86685. https://doi.org/10.1109/ACCESS.2023.3304992.
  137. Zharfi, H. (2021), "GDQ analysis of unsteady creep in a rotating temperature-dependent FGM Disk", J. Appl. Mech. Tech. Phys., 62, 118-128. https://doi.org/10.1134/S0021894421010156.
  138. Zhou, J., Qi, Q., Liu, Q., Wang, Z. and Ren, J. (2024a), "Determining residual stress profile induced by end milling from measured thin plate deformation", Thin. Wall. Struct., 200, 111862. https://doi.org/10.1016/j.tws.2024.111862.
  139. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Proc. Tech., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022.
  140. Zhu, L., Ma, C., Li, W., Huang, M., Wu, W., Koh, C.S. and Blaabjerg, F. (2024), "A novel hybrid excitation magnetic lead screw and its transient sub-domain analytical model for wave energy conversion", IEEE. Trans. Energy. Conv. https://doi.org/10.1109/TEC.2024.3354512.
  141. Zhang, G., Li, W., Yu, M., Huang, H., Wang, Y., Han, Z. and Xiao, M. (2023), "Electric-field-driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues", Adv. Sci., 10(11), 2206264. https://doi.org/10.1002/advs.202206264.
  142. Zhang, W., Zhang, S., Wei, J. and Huang, Y. (2024), "Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study", Struct., 60, 105823. https://doi.org/10.1016/j.istruc.2023.105823.
  143. Zhou, R., Bai, B., Cai, G. and Chen, X. (2024b), "Thermo-hydro-mechanic-chemical coupling model for hydrate-bearing sediment within a unified granular thermodynamic theory", Comput. Geotech., 167, 106057. https://doi.org/10.1016/j.compgeo.2023.106057.