• Title/Summary/Keyword: thick-walled sphere

Search Result 2, Processing Time 0.016 seconds

A comprehensive stress analysis in a functionally graded spherical pressure vessel: Thermo-elastic, elastoplastic and residual stress analysis

  • Thaier J. Ntayeesh;Mohsen Kholdi;Soheil Saeedi;Abbas Loghman;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.377-390
    • /
    • 2024
  • Analyzing thermoelastic, elastoplastic, and residual stresses is pivotal for deepening our insights into material characteristics, particularly in the engineering of advanced materials like functionally graded materials (FGM). This research delves into these stress types within a thick-walled sphere composed of Al-SiC FGM, employing a detailed successive approximation method (SAM) to pinpoint stress distributions under varied loading scenarios. Our investigation centers on how the sphere's structure responds to different magnitudes of internal pressure. We discover that under various states-thermoelastic, elastoplastic, and residual-the radial stresses are adversely impacted, manifesting negative values due to the compressive nature induced by internal pressures. Notably, the occurrence of reverse yielding, observed at pressures above 410 MPa, merits attention due to its significant implications on the sphere's structural integrity and operational efficacy. Employing the SAM allows us to methodically explore the nuanced shifts in material properties across the sphere's thickness. This study not only highlights the critical behaviors of Al-SiC FGM spheres under stress but also emphasizes the need to consider reverse yielding phenomena to maintain safety and reliability in their application. We advocate for ongoing refinement of analytical techniques to further our understanding of stress behaviors in various FGM configurations, which could drive the optimized design and practical application of these innovative materials in diverse engineering fields.

Numerical Solutions for Thick-Welled Laminated Composite Spheres under Impact Pressure (충격내압을 받는 복합적층 중공구의 수치해)

  • Oh Guen;Sim Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.293-302
    • /
    • 2005
  • In this paper, the thick-walled laminated, orthotropic as well as bimaterial, composite hollow spheres under impact pressure are analyzed in detail by using the semi-discrete finite element method with the Houbolt time-integration scheme which results in unconditionally stable transient numerical results. Numerical results are obtained by using the self-constructed spherically symmetric (one-dimensional) and axially symmetric (two-dimensional) finite element programs, and compared with the previous solutions by other researchers, being shown some of which are incorrect. The finite element package Nastran is also adopted for numerical comparison.