DOI QR코드

DOI QR Code

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine (Department of Mathematics, Karunya Institute of Technology and Sciences) ;
  • R. Selvamani (Department of Mathematics, Karunya Institute of Technology and Sciences) ;
  • F. Ebrahimi (Department of Mechanical Engineering, Imam Khomieni International University)
  • Received : 2024.03.23
  • Accepted : 2024.07.08
  • Published : 2024.08.25

Abstract

This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

Keywords

References

  1. Alghamdi, N.A. (2024), "Coupled influences of magnetic field and several thermal loads on vibration of thermoelastic nano-ceramic (Si3N4) beam", J. Eng. Res., https://doi.org/10.1016/j.jer.2024.02.014.
  2. Alibeigi, B., Tadi Beni, Y. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus, 133, 1-18. https://doi.org/10.1140/epjp/i2018-11954-7.
  3. Alibeigi, B., Tadi Beni, Y. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus, 133, 1-18. https://doi.org/10.1140/epjp/i2018-11954-7.
  4. Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004.
  5. Arshid, E., Ghorbani, M.A., Momeni Nia, M.J., Civalek, O . and Kumar, A. (2023) "Thermo-elastic buckling behaviors of advanced fluid-infiltrated porous shells integrated with GPLs-reinforced nanocomposite patches", Mech. Adv. Mater. Struct., 1-17. https://doi.org/10.1080/15376494.2023.2251015.
  6. Barretta, R., Fabbrocino, F. and Luciano, R. (2018), "Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams", Physica E: Low Dimens. Syst. Nanostruct., 97, 13-30. https://doi.org/10.1016/j.physe.2017.09.026.
  7. Beni, Y.T. (2022), "Size dependent coupled electromechanical torsional analysis of porous FG flexoelectric micro/nanotubes", Mech. Syst. Signal Pr., 178, 109281. https://doi.org/10.1016/j.ymssp.2022.109281.
  8. Beni, Y.T. (2023), "Size-dependent electro-thermal buckling analysis of flexoelectric microbeams", Int. J. Struct. Stab. Dyn., 24(08), 2450093. https://doi.org/10.1142/S0219455424500937.
  9. Beni, Z.T. and Beni, Y.T. (2022), "Dynamic stability analysis of size-dependent viscoelastic/piezoelectric nano-beam", Int. J. Struct. Stab. Dyn., 22(05), 2250050. https://doi.org/10.1142/S021945542250050X.
  10. Ebrahimi, F. (2021), "Wave dispersion in viscoelastic FG nanobeam via a novel spatial - temporal nonlocal strain gradient framework", Wave. Random Complex Media, 1-23. https://doi.org/10.1080/17455030.2021.1970282.
  11. Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/j.compstruct.2017.01.036.
  12. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24, 549-564. https://doi.org/10.1177/1077546316646239.
  13. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24, 549-564. https://doi.org/10.1177/1077546316646239.
  14. Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory", Eur. Phys. J. Plus, 132, 449. https://doi.org/10.1140/epjp/i2017-11694-2.
  15. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016(1), 9561504. https://doi.org/10.1155/2016/9561504.
  16. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23,1379-1397. https://doi.org/10.1080/15376494.2015.1091524.
  17. Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1) 83. https://doi.org/10.12989/ANR.2020.8.1.083
  18. Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8, 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
  19. Ebrahimi, F., Karimiasl, M. and Singhal, A. (2021), "Magneto-electro-elastic analysis of piezoelectric-flexoelectric nanobeams rested on silica aerogel foundation", Eng. Comput., 37, 1007-1014. https://doi.org/10.1007/s00366-019-00869-z.
  20. Ghobadi, A., Beni, Y.T. and Golestanian, H. (2020), "Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field", Arch. Appl. Mech., 90, 2025-2070. https://doi.org/10.1007/s00419-020-01708-0.
  21. Hosseini, S.M.H. and Beni, Y.T. (2023), "Free vibration analysis of rotating piezoelectric/flexoelectric microbeams", Appl. Phys. A, 129(5), 330. https://doi.org/10.1007/s00339-023-06615-z.
  22. Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field", J. Comput. Des. Eng., 7(6), 685-699. https://doi.org/10.1093/jcde/qwaa051
  23. Ke, L.L. and Wang, Y. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E: Low Dimens. Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
  24. Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21, 025018. https://doi.org/10.1088/0964-1726/21/2/025018.
  25. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of piezoelectric based on the nonlocal theory", Compos. Struct., 94, 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.
  26. Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4.
  27. Li, L. and Hu, Y. (2016), "Nonlinear and free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  28. Li, S.R., Su, H.D. and Cheng, C.J. (2009), "Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment", Appl. Math. Mech., 30, 969-982. https://doi.org/10.1007/s10483-009-0803-7.
  29. Lim, C.W., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  30. Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A.M.S. and Barati, M.R. (2020), "Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multi-phase magneto-electro-elastic beams", J. Magnet. Magnet. Mater., 503, 166649. https://doi.org/10.1016/j.jmmm.2020.166649.
  31. Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B: Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  32. Rad, E.S., Saidi, A.R., Rezaei, A.S. and Askari, M. (2020), "Shear deformation theories for elastic buckling of fluid-infiltrated porous plates: An analytical approach", Compos. Struct., 254, 112829. https://doi.org/10.1016/j.compstruct.2020.112829.
  33. Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006.
  34. Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B: Eng., 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008.
  35. Selvamani, R., Loganathan, R., Dimitri, R. and Tornabene, F. (2023), "Nonlocal state-space strain gradient wave propagation of magneto thermo piezoelectric functionally graded nanobeam", Curv. Layer. Struct., 10(1), 20220192. https://doi.org/10.1515/cls-2022-0192.
  36. Shariati, A., Ebrahimi, F. and Karimiasl, M. (2020), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9, 183-191. https://doi.org/10.12989/anr.2020.9.3.183.
  37. Sun, D. and Luo, S.N. (2011), "Wave propagation of functionally graded material plates in thermal environments", Ultrasonic., 51, 940-952. https://doi.org/10.1016/j.ultras.2011.05.009.
  38. Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B, 43, 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
  39. Thai, H.T., Park, T. and Choi, D.H. (2013), "An efficient shear deformation theory for vibration of functionally graded plates", Arch. Appl. Mech., 83, 137-149. https://doi.org/10.1007/s00419-012-0642-4.
  40. Van Vinh, P. and Tounsi, A. (2022), "The role of spatial vibration of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 38(Suppl 5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8.
  41. Xiao, W.S., Gao, Y. and Zhu, H. (2019), "Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams", Microsyst. Technol., 25, 2451-2470. https://doi.org/10.1007/s00542-018-4145-2.