References
- Alghamdi, N.A. (2024), "Coupled influences of magnetic field and several thermal loads on vibration of thermoelastic nano-ceramic (Si3N4) beam", J. Eng. Res., https://doi.org/10.1016/j.jer.2024.02.014.
- Alibeigi, B., Tadi Beni, Y. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus, 133, 1-18. https://doi.org/10.1140/epjp/i2018-11954-7.
- Alibeigi, B., Tadi Beni, Y. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus, 133, 1-18. https://doi.org/10.1140/epjp/i2018-11954-7.
- Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004.
- Arshid, E., Ghorbani, M.A., Momeni Nia, M.J., Civalek, O . and Kumar, A. (2023) "Thermo-elastic buckling behaviors of advanced fluid-infiltrated porous shells integrated with GPLs-reinforced nanocomposite patches", Mech. Adv. Mater. Struct., 1-17. https://doi.org/10.1080/15376494.2023.2251015.
- Barretta, R., Fabbrocino, F. and Luciano, R. (2018), "Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams", Physica E: Low Dimens. Syst. Nanostruct., 97, 13-30. https://doi.org/10.1016/j.physe.2017.09.026.
- Beni, Y.T. (2022), "Size dependent coupled electromechanical torsional analysis of porous FG flexoelectric micro/nanotubes", Mech. Syst. Signal Pr., 178, 109281. https://doi.org/10.1016/j.ymssp.2022.109281.
- Beni, Y.T. (2023), "Size-dependent electro-thermal buckling analysis of flexoelectric microbeams", Int. J. Struct. Stab. Dyn., 24(08), 2450093. https://doi.org/10.1142/S0219455424500937.
- Beni, Z.T. and Beni, Y.T. (2022), "Dynamic stability analysis of size-dependent viscoelastic/piezoelectric nano-beam", Int. J. Struct. Stab. Dyn., 22(05), 2250050. https://doi.org/10.1142/S021945542250050X.
- Ebrahimi, F. (2021), "Wave dispersion in viscoelastic FG nanobeam via a novel spatial - temporal nonlocal strain gradient framework", Wave. Random Complex Media, 1-23. https://doi.org/10.1080/17455030.2021.1970282.
- Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/j.compstruct.2017.01.036.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24, 549-564. https://doi.org/10.1177/1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24, 549-564. https://doi.org/10.1177/1077546316646239.
- Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory", Eur. Phys. J. Plus, 132, 449. https://doi.org/10.1140/epjp/i2017-11694-2.
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016(1), 9561504. https://doi.org/10.1155/2016/9561504.
- Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23,1379-1397. https://doi.org/10.1080/15376494.2015.1091524.
- Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1) 83. https://doi.org/10.12989/ANR.2020.8.1.083
- Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8, 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
- Ebrahimi, F., Karimiasl, M. and Singhal, A. (2021), "Magneto-electro-elastic analysis of piezoelectric-flexoelectric nanobeams rested on silica aerogel foundation", Eng. Comput., 37, 1007-1014. https://doi.org/10.1007/s00366-019-00869-z.
- Ghobadi, A., Beni, Y.T. and Golestanian, H. (2020), "Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field", Arch. Appl. Mech., 90, 2025-2070. https://doi.org/10.1007/s00419-020-01708-0.
- Hosseini, S.M.H. and Beni, Y.T. (2023), "Free vibration analysis of rotating piezoelectric/flexoelectric microbeams", Appl. Phys. A, 129(5), 330. https://doi.org/10.1007/s00339-023-06615-z.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field", J. Comput. Des. Eng., 7(6), 685-699. https://doi.org/10.1093/jcde/qwaa051
- Ke, L.L. and Wang, Y. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E: Low Dimens. Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
- Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21, 025018. https://doi.org/10.1088/0964-1726/21/2/025018.
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of piezoelectric based on the nonlocal theory", Compos. Struct., 94, 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.
- Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4.
- Li, L. and Hu, Y. (2016), "Nonlinear and free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Li, S.R., Su, H.D. and Cheng, C.J. (2009), "Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment", Appl. Math. Mech., 30, 969-982. https://doi.org/10.1007/s10483-009-0803-7.
- Lim, C.W., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A.M.S. and Barati, M.R. (2020), "Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multi-phase magneto-electro-elastic beams", J. Magnet. Magnet. Mater., 503, 166649. https://doi.org/10.1016/j.jmmm.2020.166649.
- Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B: Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
- Rad, E.S., Saidi, A.R., Rezaei, A.S. and Askari, M. (2020), "Shear deformation theories for elastic buckling of fluid-infiltrated porous plates: An analytical approach", Compos. Struct., 254, 112829. https://doi.org/10.1016/j.compstruct.2020.112829.
- Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006.
- Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B: Eng., 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008.
- Selvamani, R., Loganathan, R., Dimitri, R. and Tornabene, F. (2023), "Nonlocal state-space strain gradient wave propagation of magneto thermo piezoelectric functionally graded nanobeam", Curv. Layer. Struct., 10(1), 20220192. https://doi.org/10.1515/cls-2022-0192.
- Shariati, A., Ebrahimi, F. and Karimiasl, M. (2020), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9, 183-191. https://doi.org/10.12989/anr.2020.9.3.183.
- Sun, D. and Luo, S.N. (2011), "Wave propagation of functionally graded material plates in thermal environments", Ultrasonic., 51, 940-952. https://doi.org/10.1016/j.ultras.2011.05.009.
- Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B, 43, 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
- Thai, H.T., Park, T. and Choi, D.H. (2013), "An efficient shear deformation theory for vibration of functionally graded plates", Arch. Appl. Mech., 83, 137-149. https://doi.org/10.1007/s00419-012-0642-4.
- Van Vinh, P. and Tounsi, A. (2022), "The role of spatial vibration of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 38(Suppl 5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8.
- Xiao, W.S., Gao, Y. and Zhu, H. (2019), "Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams", Microsyst. Technol., 25, 2451-2470. https://doi.org/10.1007/s00542-018-4145-2.