DOI QR코드

DOI QR Code

Modeling and simulation of air-water upward annular flow characteristics in a vertical tube using CFD

  • Anadi Mondal (Department of Chemical Engineering (Nuclear Engineering Program), University of Massachusetts-Lowell, One University Avenue) ;
  • Subash L Sharma (Department of Chemical Engineering (Nuclear Engineering Program), University of Massachusetts-Lowell, One University Avenue)
  • 투고 : 2023.12.25
  • 심사 : 2024.05.18
  • 발행 : 2024.07.25

초록

Annular flow refers to a special type of two-phase flow pattern in which liquid flows as a thin film at the periphery of a pipe, tube, or conduit, and gas with relatively high velocity flows at the center of the flow section. This gas also includes dispersed liquid droplets. The liquid film flow rate continuously changes inside the tube due to two processes-entrainment and deposition. To determine the liquid holdup, pressure drop, the onset of dryout, and heat transfer characteristics in annular flow, it is important to have proper knowledge of flow characteristics. Especially a better understanding of entrainment fraction is important for the heat transfer and safe operation of two-phase flow systems operating in an annular two-phase flow regime. Therefore, the objective of this work is to develop a computational model for the simulation of the annular two-phase flow regime and assess the various existing models for the entrainment rate. In this work, Computational Fluid Dynamics (CFD) in ANSYS FLUENT has been applied to determine annular flow characteristics such as liquid film thickness, film velocity, entrainment rate, deposition rate, and entrainment fraction for various gas-liquid flow conditions in a vertical upward tube. The gas core with droplets was simulated using the Discrete Phase Model (DPM) which is based on the Eulerian-Lagrangian approach. The Eulerian Wall Film (EWF) model was utilized to simulate liquid film on the tube wall. Three different models of Entrainment rate were implemented and assessed through user-defined functions (UDF) in ANSYS. Finally, entrainment for fully developed flow was determined and compared with the experimental data available in the literature. From the simulations, it was obtained that the Bertodano correlation performed best in predicting entrainment fraction and the results were within the ±30 % limit when compared to experimental data.

키워드

참고문헌

  1. C. Berna, A. Escriva, J.L. Munoz-Cobo, L.E. Herranz, "Review of droplet entrainment in the annular flow: interfacial waves and onset of entrainment", Prog. Nucl. Energy 74 (2014) 14-43. https://doi.org/10.1016/j.pnucene.2014.01.018
  2. A.M. Aliyu, A.A. Almabrok, Y.D. Baba, A. Archibong-Eso, L. Lao, H. Yeung, K. C. Kim, Prediction of entrained droplet fraction in Co-current annular gas-liquid flow in vertical pipes, Exp. Therm. Fluid Sci. 85 (2017) 287-304. https://doi.org/10.1016/j.expthermflusci.2017.03.012
  3. K. K. Kuo and F. B. Cheung, "Droplet Entrainment of Breakup by Shear Flow, "Combustion Propulsion and Ballistic Technology Corporation, 1217 Smithfield Street, PA, 16801..
  4. M.J. Holowach, L.E. Hochreiter, F.B. Cheung, " A model for droplet entrainment in heated annular flow", Int. J. Heat Fluid Flow 23 (2002) 807-822. https://doi.org/10.1016/S0142-727X(02)00194-7
  5. A. Wolf, S. Jayanti, G.F. Hewitt, Flow development in vertical annular flow, Chem. Eng. Sci. 53 (2001) 3221-3235. https://doi.org/10.1016/S0009-2509(00)00546-7
  6. B.J. Azzopardi, Drops in annular tho-phase flow, Int. J. Multiphas. Flow 23 (1998) 1-53. https://doi.org/10.1016/S0301-9322(97)00087-6
  7. R. Zhang, H. Liu, S. Dong, M. Liu, A probability model for fully developed annular flow in vertical pipes: film thickness, interfacial shear stress, and droplet size distribution, J. Heat Tran. 139 (2017).
  8. M. Ishii, M.A. Grolmes, Inception criteria for droplet entrainment in two-phase concurrent film flow, AIChE J. 21 (2) (1975) 308-318. https://doi.org/10.1002/aic.690210212
  9. W.D. Hinkle, H. Fenech, A study of liquid mass transport in annular air-water flow, Nucl. Sci. Eng. 87 (1) (1984) 2-12. https://doi.org/10.13182/NSE84-A17440
  10. A.A. Sarkhi, C. Sarica, B. Qureshi, Modeling of droplet entrainment in Co-current annular two-phase flow: a new approach, Int. J. Multiphas. Flow 39 (2012) 21-28. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.008
  11. A. Cioncolini, J.R. Thome, Prediction of the entrainment liquid fraction in vertical annular gas-liquid two-phase flow, Int. J. Multiphas. Flow 36 (4) (2010) 293-302. https://doi.org/10.1016/j.ijmultiphaseflow.2009.11.011
  12. J. Wurtz, An experimental and theoretical investigation of annular steam-water flow in tubes and annuli at 30 to 90 bar, Riso Report No. 372 (1978).
  13. G.H. Yeoh, Thermal hydraulic considerations of nuclear reactor systems: past, present and future challenges, Experimental and Computational Multiphase Flow 1 (1) (2019) 3-27. https://doi.org/10.1007/s42757-019-0002-5
  14. M. Wicks, A.E. Dukler, In situ measurements of drop size distribution in two-phase flow: a new method for electrically conducting liquid, in: Paper Presented at International Heat Transfer Conference, 1966. Chicago, IL.
  15. G.B. Wallis, "The Onset of Droplet Entrainment in Annular Gas-Liquid Flow", General Electric Report, 1962.
  16. L.B. Cousins, G.F. Hewitt, "Liquid Phase Mass Transfer in Annular Two-phase Flow: Droplet Deposition and Liquid Entrainment", 1968. UKAEA Report, AERE-5657.
  17. R.K.F. Keeys, J.C. Ralph, D.N. Roberts, Liquid Entrainment in Adiabatic Steam Water Flow at 500 and 100 Psia, 1970. UKAEA report, AERE-R6292.
  18. M.L. Bertodano, C. Jan, S. Beus, Annular flow entrainment rate experiment in a small vertical pipe, Nucl. Eng. Des. 178 (1) (1997) 61-70. https://doi.org/10.1016/S0029-5493(97)00175-1
  19. A. Assad, C. Jan, M.L. Bertodano, S. Beus, Scaled entrainment measurement in ripple annular flow in A small tube, Nucl. Eng. Des. 184 (1998) 437-447. https://doi.org/10.1016/S0029-5493(98)00214-3
  20. E.R. Quandt, Measurement of some basic parameters in two-phase annular flow, American Institute of Chemical Engineers Journal 11 (2) (1965) 311-318. https://doi.org/10.1002/aic.690110223
  21. B.J. Azzopardi, S.H. Zaidi, " determination of entrainment fraction in vertical annular gas/liquid flow", J. Fluid Eng. 122 (1) (2000) 146-150. https://doi.org/10.1115/1.483236
  22. T. Okawa, A. Kotani, I. Kataoka, M. Naito, Prediction of critical heat flux in annular flow using a film flow model, J. Nucl. Sci. Technol. 40 (6) (2003) 388-396. https://doi.org/10.1080/18811248.2003.9715370
  23. B.J. Azzopardi, Mechanism s of entrainment in annular two-phase flow, UKAEA Atomic Energy Research Establishments (1983). AERE-11068.
  24. P. Andreussi, J.C. Asali, T.J. Hanratty, " Initiation of roll waves in gas-liquid flows", AIChE 31 (1985) 119-126. https://doi.org/10.1002/aic.690310114
  25. H. Han, A Study of Entrainment in Two-phase Upward Concurrent Annular Flow in A Vertical Tube, PhD thesis, 2005.
  26. J. Yao, Y. Yao, Transient CFD modeling of air-water two-phase annular flow characteristics in a small horizontal circular pipe, Fluid 7 (6) (2022).
  27. N. Ayuba, F.R. Machado, C.A. Rosa, T.J. Lopes, A. Silva, 3D interface analysis of velocity, volume ratio, and Reynolds number effects on core annular flow (CAF), Experimental and Computational Multiphase Flow 4 (2021) 133-141. https://doi.org/10.1007/s42757-020-0076-3
  28. J. Shi, B. Sun, G. Zhang, F. Song, L. Yang, " Prediction of dryout and post-dryout wall temperature at different operating parameters for once-through steam generators", Int. J. Heat Mass Tran. 103 (2016) 66-76. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.027
  29. H. Li, A. Henryk, " CFD model of diabatic annular two-phase flow using the eulerian-lgrangian approach", Ann. Nucl. Energy 77 (2015) 415-424. https://doi.org/10.1016/j.anucene.2014.12.002
  30. W. Fan, H. Li, H. Anglart, " A study of rewetting and conjugate heat transfer influence on dryout and post dryout phenomena with a multi-domain coupled CFD approach", Int. J. Heat Mass Tran. 163 (2020).
  31. B.N. Kishore, S. Jayanti, " A multidimensional model for annular gas-liquid flow", Chem. Eng. Sci. 59 (2004) 3577-3589. https://doi.org/10.1016/j.ces.2004.06.003
  32. H. Anzai, Y. Shindo, Y. Kohata, M. Hasegwa, H. Takana, T. Matsunaga, T. Akaike, M. Otha, " Coupled discrete phase model and Eulerian wall film model for numerical simulation of respiratory droplet generation during coughing", Sci. Rep. 12 (2022). Article 14849.
  33. P. Sawant, M. Ishii, M. Mori, Droplet entrainment correlation in vertical upward Co-current annular two-phase flow, Nucl. Eng. Des. 238 (2008) 1342-1352. https://doi.org/10.1016/j.nucengdes.2007.10.005
  34. L. E. Stone, P.W. Wypych, D. B. Hastie and S. Zigan, " CFD-DEM modelling of powder flows and dust generation mechanisms - a review", ICBMH 2016 - 12th International Conference on Bulk Materials Storage, Handling and Transportation, Proceedings (pp. 417-426). Barton, Australia: Engineers Australia..
  35. S. Sivier, E. Loth, J. Baum, R. Lohner, "Eulerian-Eulerian and Eulerian-Lagrangian methods in two phase flow", Eulerian-Eulerian and Eulerian-Lagrangian methods in two phase flow, in: M. Napolitano, F. Sabetta (Eds.), Thirteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, 414, Springer, Berlin, Heidelberg, 1993.
  36. ANSYS, Inc., ANSYS Fluent User's Guide, 2015. November.
  37. A. Guha, " transport and deposition of particles in turbulent and laminar flow", Annu. Rev. Fluid Mech. 40 (2008) 311-341. https://doi.org/10.1146/annurev.fluid.40.111406.102220
  38. S.K. Friedlander, Deposition of Suspended Particles from Turbulent Gas Streams, Engineering Experiment Station, University of Illinois, 1954. Technical Report No. 13.
  39. W.H. Henstock, T.J. Hanratty, " the interfacial drag and the height of the wall layer in annular flows", AIChE J. 22 (6) (1976) 990-1000. https://doi.org/10.1002/aic.690220607
  40. K. Hori, M. Nakasatomi, K. Nishikawa, K. Sekoguchi, " Study of ripple region in annular two-phase flow (3rd report, effect of liquid viscosity on gas-liquid interfacial character and friction factor)", Trans. Jap. Soc. Mech. Eng. 44 (1978) 3847-3856. https://doi.org/10.1299/kikai1938.44.3847
  41. R. MacGillivary, Gravity and Gas Density Effects on Annular Flow Average Thickness and Frictional Pressure Drop (M.S Thesis), University of Saskatchewan, Saskatoon, Canada, 2004.
  42. P. Ju, C.S. Brooks, M. Ishii, Y. Liu, T. Hibiki, Film thickness of vertical upward co-current adiabatic flow in pipes, Int. J. Heat Mass Tran. 89 (2015) 985-995. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.002
  43. R. Kumar, M. Gottmann, K.R. Sridhar, " film thickness and wave velocity measurement in a vertical duct", J. Fluid Eng. 124 (3) (2002) 634-642. https://doi.org/10.1115/1.1493808
  44. P. Marmottant, E. Villermaux, " on spray formation", J. Fluid Mech. 498 (2004) 73-111. https://doi.org/10.1017/S0022112003006529
  45. P. Ju, Y. Lie, X. Yang, M. Ishii, " Wave characteristics of vertical upward adiabatic annular flow in pipes", Int. J. Heat Mass Tran. 145 (2019).
  46. A. Al-Sarkhi, C. Sarica, K. Magrini, " Inclination effects on wave characteristics in annular gas-liquid flows", AIChE J. 58 (4) (2011) 1018-1029. https://doi.org/10.1002/aic.12653
  47. D. Schubring, T.A. Shedd, " Wave behavior in horizontal annular air-water flow", Int. J. Multiphas. Flow 34 (2008) 636-646. https://doi.org/10.1016/j.ijmultiphaseflow.2008.01.004
  48. G.H. Hewitt, A.H. Govan, Phenomenological modeling of non-equilibrium flows with phase change, Int. J. Heat Mass Tran. 33 (1991) 229-242. https://doi.org/10.1016/0017-9310(90)90094-B
  49. D.F. Tatterson, J.C. Dallman, T.J. Hanratty, Drop sizes in annular gas-liquid flows, AIChE J. 23 (1) (1977) 68-76. https://doi.org/10.1002/aic.690230112
  50. I. Kataoka, M. Ishii, K. Mishima, Generation and size distribution of droplet in annular two-phase flow, Transactions of the ASME 105 (1983) 230-238.
  51. G.F. Hewitt, D.N. Roberts, " Studies of Two-phase Flow Pattern by Simultaneous X-Ray and Flash Photography", 1969. Report, AERE-M2159.
  52. M.B. Alamu, B.J. Azzopardi, " simultaneous investigation of entrained liquid fraction, liquid film thickness and pressure drop in vertical annular flow", J. Energy Resour. Technol. 133 (2) (2011) 023103.
  53. A. Liu, C. Yan, F. Zhu, H. Gu, S. Gong, " Liquid film thickness of vertical upward annular flow in narrow rectangular channel", Chem. Eng. Res. Des. 175 (2021) 10-24. https://doi.org/10.1016/j.cherd.2021.08.011
  54. D.M. Jepson, B.J. Azzopardi, P.B. Whalley, " the effect of gas properties of drops in annular flow", Int. J. Multiphas. Flow 15 (1989) 327-339. https://doi.org/10.1016/0301-9322(89)90004-9
  55. A. Mondal, S. Sharma, " Prediction of entrainment fraction in two-phase gas-liquid co-current annular flow-A machine learning approach,", Int. J. Heat Mass Tran. 226 (2024).